
struct node *p_previous

 char *unique_word
 int word_count

struct node

struct node *p_next

allocate memory when a new node is created

allocate memory for word (string) being added

struct node *p_tail

struct node *p_head

struct node *p_current

pointer to address of first node in list

pointer to address of last node in list

pointer to address of last node added or “accessed”
Note: last accessed node is defined in find_word()

struct linked_list

Structures used to maintain doubly-linked list

ONE global definition of the list

print_list(struct linked_list *p_list) {

 struct node *current = p_list->p_head;

 while(current != NULL){

 printf("%s ", current->unique_word);

 current = current->p_next;

 }

 printf("\n");

 return;

}

main() {

 struct linked_list myList ;

 memset(&myList, 0, sizeof(myList)) ;

 add_node_at_head(&myList, "beginning") ;

 print_list(&myList);

 add_node_after_current(&myList, "middle");

 print_list(&myList);

 add_node_after_current(&myList, "whatever");

 print_list(&myList);

 find_word(&myList, "sponge");

 add_node_after_current(&myList, "sponge");

 print_list(&myList);

}

The following (not complete) test program is used for the linked list illustration that follows. Note we have added a utility function
print_list() to output the word contents of the linked list to help with testing.

bash-4.4$./test

beginning

beginning middle

beginning middle whatever

beginning middle sponge whatever

bash-4.4$

Sample run

struct node *p_previous

char *unique_word
 int word_count

struct node

struct node *p_next

allocate memory (0x5000) when create_node() is called
(Note: using fictitious heap address 0x5000)

“beginning” (allocated and COPIED in create_node())

struct node *p_tail

struct node *p_head

struct linked_list myList

struct node *p_current

1

NULL

NULL

pointer to address of “beginning” node (0x5000)

pointer to address of “beginning” node (0x5000)

pointer to address of “beginning” node (0x5000)

struct linked_list myList; // all fields initialized to NULL via memset()

add_node_at_head(&myList, “beginning”) // add_node_at_head() calls create_node()

(current)

*p_previous = 0x5000

*unique_word = “middle”
 word_count =1

struct node (0x6000)

*p_next = NULL

struct node *p_tail

struct node *p_head

struct linked_list myList

struct node *p_current

pointer to address of “beginning” node (0x5000)

pointer to address of “middle” node (0x6000)

pointer to address of “middle” node (0x6000)

add_node_after_current(&myList, “middle”) // add_node_after_current() calls create_node()

*p_previous = NULL

*unique_word “beginning”
 word_count = 1

struct node (0x5000)

*p_next = 0x6000

(current)

*p_previous = 0x5000

*unique_word = “middle”
 word_count =1

struct node (0x6000)

*p_next = 0x7000

struct node *p_tail

struct node *p_head

struct linked_list myList

struct node *p_current

pointer to address of “beginning” node (0x5000)

pointer to address of “whatever” node (0x7000)

pointer to address of “whatever” node (0x7000)

add_node_after_current(&myList, “whatever”) // add_node_after_current() calls create_node()

*p_previous = NULL

*unique_word “beginning”
 word_count = 1

struct node (0x5000)

*p_next = 0x6000

*p_previous = 0x6000

*unique_word = “whatever”
 word_count =1

struct node (0x7000)

*p_next = NULL

(current)

*p_previous = 0x5000

*unique_word = “middle”
 word_count = 1

struct node (0x6000)

*p_next = 0x7000

struct node *p_tail

struct node *p_head

struct linked_list myList

struct node *p_current

pointer to address of “beginning” node (0x5000)

pointer to address of “whatever” node (0x7000)

pointer to address of “middle” node (0x6000)

find_word(&myList, “sponge”) // “sponge” is not in the list, returns -1 (not success)

 // current will be set to “middle” node

 // list remains unchanged except for current pointer

*p_previous = NULL

*unique_word “beginning”
 word_count = 1

struct node (0x5000)

*p_next = 0x6000

*p_previous = 0x6000

*unique_word = “whatever”
 word_count = 1

struct node (0x7000)

*p_next = NULL

(current)
(alphabetically sponge
should have been here)

*p_previous = 0x5000

*unique_word = “middle”
 word_count =1

struct node (0x6000)

*p_next = 0x8000

add_node_after_current(&myList, “sponge”) // relies on current being set correctly!

 // note re-wiring of pointers

*p_previous = NULL

*unique_word “beginning”
 word_count = 1

struct node (0x5000)

*p_next = 0x6000

*p_previous = 0x8000

*unique_word = “whatever”
 word_count = 1

struct node (0x7000)

*p_next = NULL

*p_previous = 0x6000

(struct word_entry)
 *unique_word = “sponge”
 word_count =1

struct node (0x8000)

*p_next = 0x7000

(current)

*p_tail = 0x7000

*p_head = 0x5000

struct linked_list myList

*p_current = 0x8000

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

