
JUnitJUnit

Tom ReichlmayrTom Reichlmayr
Software Engineering DepartmentSoftware Engineering Department
Rochester Institute of TechnologyRochester Institute of Technology

AgendaAgenda

Background Background –– Unit Testing Unit Testing
JUnit Features JUnit Features -- SimpleTest SimpleTest
Looking Under the HoodLooking Under the Hood
More JUnit ExamplesMore JUnit Examples

Testing, 1 Testing, 1 –– 2 2 –– 3 3 –– 4, Testing4, Testing……

What Does a Unit Test Test?What Does a Unit Test Test?

The term The term ““unitunit”” predates the Opredates the O--O era.O era.
Unit Unit –– ““naturalnatural”” abstraction unit of an Oabstraction unit of an O--O O
system: class or its instantiated form, object.system: class or its instantiated form, object.
Unit Tests Unit Tests –– verify a small chunk of code, verify a small chunk of code,
typically a path through a method or function.typically a path through a method or function.
Not application level functionality.Not application level functionality.

How Do We Unit Test?How Do We Unit Test?

Print Statements (Print Statements (diffsdiffs against benchmarks)against benchmarks)
Debuggers Debuggers –– examine variables, observe examine variables, observe
execution paths.execution paths.
Typically done by unit developer.Typically done by unit developer.
Best benefit if running of tests is Best benefit if running of tests is automatedautomated..
Tests best run in isolation from one another.Tests best run in isolation from one another.
Tests built incrementally as product code is Tests built incrementally as product code is
developed.developed.

The Typical Test CycleThe Typical Test Cycle

Develop a suite of test casesDevelop a suite of test cases
Create some test fixtures to support the running Create some test fixtures to support the running
of each test case.of each test case.
Run the test Run the test –– capture test results.capture test results.
CleanClean--up fixtures, if necessary.up fixtures, if necessary.
Report and analyze the test results.Report and analyze the test results.

Why is Unit Testing Good?Why is Unit Testing Good?

Identifies defects early in the development cycle.Identifies defects early in the development cycle.
Many small bugs ultimately leads to chaotic Many small bugs ultimately leads to chaotic
system behaviorsystem behavior
Testing affects the design of your code.Testing affects the design of your code.
Successful tests breed confidence.Successful tests breed confidence.
Testing forces us to read our own code Testing forces us to read our own code –– spend spend
more time reading than writingmore time reading than writing
Automated tests support maintainability and Automated tests support maintainability and
extendibility.extendibility.

Why DonWhy Don’’t We Unit Test?t We Unit Test?

““Coding unit tests takes too much timeCoding unit tests takes too much time””
““II’’m to busy fixing bugs to write testsm to busy fixing bugs to write tests””
““Testing is boring Testing is boring –– it stifles my creativityit stifles my creativity””
““My code is virtually flawlessMy code is virtually flawless…”…”
““Testing is better done by the testing Testing is better done by the testing
departmentdepartment””
““WeWe’’ll go back and write unit tests after we get ll go back and write unit tests after we get
the code workingthe code working””

What is JUnit?What is JUnit?

JUnit is an open source Java testing framework JUnit is an open source Java testing framework
used to write and run repeatable tests. used to write and run repeatable tests.
It is an instance of the It is an instance of the xUnitxUnit architecture for architecture for
unit testing frameworks. unit testing frameworks.
JUnit features include: JUnit features include:

Assertions for testing expected results Assertions for testing expected results
Test fixtures for sharing common test data Test fixtures for sharing common test data
Test suites for easily organizing and running tests Test suites for easily organizing and running tests
Graphical and textual test runners Graphical and textual test runners

The JUnit Test TemplateThe JUnit Test Template

Create a test class that extends TestCaseCreate a test class that extends TestCase
Create a Create a testxxxtestxxx() method for each individual () method for each individual
test to be run.test to be run.
Create a test fixture Create a test fixture –– resources needed to resources needed to
support the running of the test.support the running of the test.
Write the test, collect interesting test behaviorWrite the test, collect interesting test behavior
Tear down the fixture (if needed)Tear down the fixture (if needed)
Run the tests with a text or Swing interface.Run the tests with a text or Swing interface.

SimpleTestSimpleTest

import import java.utiljava.util.*;.*;
import import junit.frameworkjunit.framework.*;.*;

public class SimpleTest extends TestCase{public class SimpleTest extends TestCase{

public void public void testEmptyCollectiontestEmptyCollection() {() {
Collection Collection testCollectiontestCollection = new = new ArrayListArrayList();();
assertTrueassertTrue((testCollection.isEmptytestCollection.isEmpty());());

}}

public static void public static void main(Stringmain(String argsargs[]){[]){
junit.textui.TestRunner.run(SimpleTest.classjunit.textui.TestRunner.run(SimpleTest.class););

}}
}}

Key JUnit ConceptsKey JUnit Concepts

assert assert --
assertEqualsassertEquals(expected, actual) (expected, actual) –– also also NotEqualsNotEquals
assertNullassertNull(actual result) (actual result) –– also also NotNullNotNull
assertTrueassertTrue(actual result) (actual result) -- also Falsealso False

failures failures ––
Exceptions raised by asserts (expected)Exceptions raised by asserts (expected)

errors errors ––
Java runtime exceptions (not expected)Java runtime exceptions (not expected)

Test HierarchiesTest Hierarchies

JUnit supports test hierarchiesJUnit supports test hierarchies
Test SuiteTest Suite--AA

Test Case1Test Case1
Test Case2Test Case2
Test SuiteTest Suite--BB

Test Case3Test Case3

Test SuiteTest Suite--CC

(and so on (and so on ……))

JUnit Under the HoodJUnit Under the Hood

Originally written by Kent
Beck and Erich Gamma. –
design patterns.

An offspring of a similar
framework for Smalltalk
(SUnit)

A common xUnit
architecture has evolved
and has been implemented
in a variety of languages.

JUnit Design Objectives JUnit Design Objectives

A simple framework that encourages developers
to write unit tests.
Minimalist framework – essential features, easier
to learn, more likely to be used, flexible
Test Cases & Test Results are objects
Patterns – high “density” of patterns around key
abstractions : mature framework

JUnit Framework DesignJUnit Framework Design

See the JUnit Cook’s Tour for a full pattern analysis:
http://junit.sourceforge.net/doc/cookstour/cookstour.htm

TestCaseTestCase

TestCase.runTestCase.run() applies () applies Template MethodTemplate Method patternpattern

public void run(){

setup();

runTest();

tearDown();

}
“Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses”

TestResultTestResult

TestResult applies TestResult applies Collecting ParameterCollecting Parameter patternpattern
public void run(TestResult result) {

result.startTest(this);
setUp();
try {

runTest();
}
catch (AssertionFailedError e) {

result.addFailure(this, e);
}
catch (Throwable e) {

result.addError(this, e);
}
finally {

tearDown();
}

}

“When you need to collect results over
several methods, add a parameter to the
method and pass an object that will
collect results for you”

(Beck – Smalltalk Best Practice Patterns)

TestSuiteTestSuite

TestSuiteTestSuite applies applies CompositeComposite patternpattern

“Composite objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly”

MoreMore……

TDD / TFD ???TDD / TFD ???
Test Driven DesignTest Driven Design
Test First DesignTest First Design
JUnit provides support for these agile techniques, JUnit provides support for these agile techniques,
but JUnit is lifecycle agnosticbut JUnit is lifecycle agnostic

Extensions for J2EE applicationsExtensions for J2EE applications
What about GUIWhat about GUI’’s? s? –– JUnit limitedJUnit limited

ResourcesResources

JUnit: JUnit: www.junit.orgwww.junit.org
Testing Frameworks : Testing Frameworks :
http://c2.com/cgi/wiki?TestingFrameworkhttp://c2.com/cgi/wiki?TestingFramework
cppUnitcppUnit: : http://cppunit.sourceforge.net/doc/1.8.0/index.htmlhttp://cppunit.sourceforge.net/doc/1.8.0/index.html
SUnitSUnit: : http://http://sunit.sourceforge.netsunit.sourceforge.net//
Unit Testing in Java Unit Testing in Java –– How Tests Drive the CodeHow Tests Drive the Code, Johannes Link, Johannes Link
TestTest--Driven Development by ExampleDriven Development by Example, Kent Beck, Kent Beck
Pragmatic Unit Testing in Java with JUnitPragmatic Unit Testing in Java with JUnit, Andy Hunt & Dave , Andy Hunt & Dave
ThomasThomas
““Learning to Love Unit TestingLearning to Love Unit Testing””, Thomas & Hunt: , Thomas & Hunt:
www.pragmaticprogrammer.com/articles/stqewww.pragmaticprogrammer.com/articles/stqe--0101--2002.pdf2002.pdf

