
Personal SE

C Struct & Typedef
Make

C Structs

• A struct is a way of grouping named,
heterogeneous data elements that represent a
coherent concept.

C Structs
• A struct is a way of grouping named, heterogeneous data elements that

represent a coherent concept.
• Example:

#define MAXNAME (20)

struct person {

 char name[MAXNAME+1] ;

 int age ;

 double income ;

} ;

C Structs
• Question: What is an object with no methods and only instance variables

public?
• Answer: A struct! (well, sort of).
• A struct is a way of grouping named, heterogeneous data elements that

represent a coherent concept.
• Example:

#define MAXNAME (20)

struct person {

 char name[MAXNAME+1] ;

 int age ;

 double income ;

} ;

naming - the field
names in the struct

C Structs
• Question: What is an object with no methods and only instance variables

public?
• Answer: A struct! (well, sort of).
• A struct is a way of grouping named, heterogeneous data elements that

represent a coherent concept.
• Example:

#define MAXNAME (20)

struct person {

 char name[MAXNAME+1] ;

 int age ;

 double income ;

} ;

heterogeneous - the
fields have different
types

• Question: What is an object with no methods and only instance variables
public?

• Answer: A struct! (well, sort of).
• A struct is a way of grouping named, heterogeneous data elements that

represent a coherent concept.
• Example:

#define MAXNAME (20)

struct person {

 char name[MAXNAME+1] ;

 int age ;

 double income ;

} ;

C Structs

coherent concept -
the information
recorded for a person.

Using Structs
• Declaration:

struct person {

 char name[MAXNAME+1] ;

 int age ;

 double income ;

} ;

• Definitions:
struct person mike,

 pete ;

• Assignment / field references ('dot' notation):
mike = pete ;
pete.age = chris.age + 3

Using Structs
• Note: Space allocated for the whole struct at definition.
• Struct arguments are passed by value (i.e., copying)

WRONG
void give_raise(struct person p, double pct) {
 p.income *= (1 + pct/100) ;
 return ; // Note that return is not needed for void function
}

give_raise(mike, 10.0) ;

RIGHT
struct person give_raise(struct person p, double pct) {
 p.income *= (1 + pct/100) ;
 return p ; // must return struct person
}

mike = give_raise(mike, 10.0) ;

Symbolic Type Names - typedef
• Suppose we have a pricing system that prices goods by

weight.
– Weight is in pounds, and is a double precision number.
– Price is in dollars, and is a double precision number.
– Goal: Clearly distinguish weight variables from price variables.

Symbolic Type Names - typedef
• Suppose we have a pricing system that prices goods by

weight.
– Weight is in pounds, and is a double precision number.
– Price is in dollars, and is a double precision number.
– Goal: Clearly distinguish weight variables from price variables.

• Typedef to the rescue:
– typedef declaration ;Creates a new "type" with the variable slot in the

declaration.

Symbolic Type Names - typedef
• Suppose we have a pricing system that prices goods by

weight.
– Weight is in pounds, and is a double precision number.
– Price is in dollars, and is a double precision number.
– Goal: Clearly distinguish weight variables from price variables.

• Typedef to the rescue:
– typedef declaration ; Creates a new "type" with the variable slot in the

declaration. Use a “_t” suffix to identify it as a typedef.

• Examples:
typedef double price_t ; // alias for double to declare price variabless
typedef double weight_t ; // alias for double to declare weight variables

price_t p ; // double precision value that's a price
weight_t lbs ; // double precision value that's a weight

typedef In Practice
• Symbolic names for array types

#define MAXSTR (100)

typedef char long_string_t[MAXSTR+1] ;

long_string_t line ;
long_string_t buffer ;

typedef In Practice

• Shorter name for struct types:
typedef struct {
 long_string_t label ; // name for the point
 double x ; // xcoordinate
 double y ; // ycoordinate
} point_t ; // pick a name that suggests it is a struct

point_t origin ;
point_t focus ;

Make and Makefiles

• Problem:
– Program comprises many source files.

Make and Makefiles

• Problem:
– Program comprises many source files.
– Recompiling everything is time-consuming and redundant.

Make and Makefiles

• Problem:
– Program comprises many source files.
– Recompiling everything is time-consuming and redundant.
– Changes to a file may make other files obsolete.

Make and Makefiles

• Problem:
– Program comprises many source files.
– Recompiling everything is time-consuming and redundant.
– Changes to a file may make other files obsolete.
– How can we periodically regenerate the executable doing the

minimum amount of work?

Make and Makefiles

• Problem:
– Program comprises many source files.
– Recompiling everything is time-consuming and redundant.
– Changes to a file may make other files obsolete.
– How can we periodically regenerate the executable doing the

minimum amount of work?

• Solution: make (or ant, rake and other similar programs)

Make and Makefiles

• Problem:
– Program comprises many source files.
– Recompiling everything is time-consuming and redundant.
– Changes to a file may make other files obsolete.
– How can we periodically regenerate the executable doing the

minimum amount of work?

• Solution: make (or ant, rake and other similar programs)
– Record obsolescence dependencies: a Directed Acyclic Graph (DAG)

Make and Makefiles

• Problem:
– Program comprises many source files.
– Recompiling everything is time-consuming and redundant.
– Changes to a file may make other files obsolete.
– How can we periodically regenerate the executable doing the

minimum amount of work?

• Solution: make (or ant, rake and other similar programs)
– Record obsolescence dependencies: a Directed Acyclic Graph (DAG)
– Define commands to recreate obsolete files.

Make and Makefiles

• Problem:
– Program comprises many source files.
– Recompiling everything is time-consuming and redundant.
– Changes to a file may make other files obsolete.
– How can we periodically regenerate the executable doing the

minimum amount of work?

• Solution: make (or ant, rake and other similar programs)
– Record obsolescence dependencies: a Directed Acyclic Graph (DAG)
– Define commands to recreate obsolete files.
– Depth first traversal of the DAG to bring things up-to-date.

What Is A Dependency?

• File A depends on file B if the correctness of A's contents are
affected by changes to B.

• Thus an object file depends on its source:
– A change to the source makes the object file incorrect.

• An object file depends on interfaces its source file uses:
– Interface change may change the meaning of the source code
– E.g., change a configuration constant, a struct, etc.

• An executable program depends on the object code files from
which it is built.

Example
• Program abc made from main.o, util.o, calc.o and io.o.
• main.c includes calc.h, util.h and io.h.
• util.c includes util.h and io.h.
• calc.c includes calc.h.
• io.c includes io.h.

main.c util.c

calc.h io.h util.h

io.c calc.c

main.o util.o io.o calc.o

abc

DEPENDENCY KEY

program to object green
object to source orange
object to interface blue

Dependencies in Makefiles

target: dependency1 dependency2 . . . dependencyN

For our example the dependency lines are

abc: main.o util.o calc.o io.o

main.o: main.c util.h calc.h io.h

util.o: util.c util.h io.h

calc.o: calc.c calc.h

io.o: io.c io.h

Is a Target Up-To-Date?

• A target is up-to-date iff
– It exists (obviously).
– It was modified later than any of its dependencies after they have all

been brought up-to-date.

• What do we do if a file is not up-to-date?
– We run one or more commands to bring it up-to-date.
– For a program, we link the object files.
– For an object file, we recompile its source.

• For make, command lines:
– Follow the dependency line.
– MUST begin with a hard tab (Tab key or CTRL-I).

Completed Makefile for the
Example

abc: main.o util.o calc.o io.o

 gcc -o abc –g main.o util.o calc.o io.o

main.o: main.c util.h calc.h io.h

 gcc -c –Wall –g main.c

util.o: util.c util.h io.h

 gcc -c –Wall –g util.c

calc.o: calc.c calc.h

 gcc -c –Wall –g calc.c

io.o: io.c io.h

 gcc -c –Wall –g io.c

Assuming Existence of
"Makefile"

make
– Brings the default up to date which is the first target (abc in this case)

make abc
– Specifically brings abc up to date.
– First brings main.o util.o calc.o and io.o up to date
– Then relink abc iff

• abc does not exist
• abc is older than at least one of its dependencies (any of four .o files)

make main.o
– Just brings main.o up to date.
– Any target can be specified.

Things to Note

• Targets need not have any dependencies.
• Targets need not ever really be made – runs

command(s) every time.
• Multiple commands can be run.
• Example: Generic "clean" target:

clean:

 rm -f *.o *~* abc

	Personal SE
	C Structs
	C Structs
	C Structs
	C Structs
	C Structs
	Using Structs
	Using Structs
	Symbolic Type Names - typedef
	Symbolic Type Names - typedef
	Symbolic Type Names - typedef
	typedef In Practice
	typedef In Practice
	Make and Makefiles
	Make and Makefiles
	Make and Makefiles
	Make and Makefiles
	Make and Makefiles
	Make and Makefiles
	Make and Makefiles
	Make and Makefiles
	What Is A Dependency?
	Example
	Dependencies in Makefiles
	Is a Target Up-To-Date?
	Completed Makefile for the Example
	Assuming Existence of "Makefile"
	Things to Note

