Memory Management in C
(Dynamic Strings)

Personal Software Engineering

Memory Organization

= rreiiEr Gl The m The call stack grows from the
Erames ~ Stack top of memory down.

m Code is at the bottom of

Available The memory.

for >
Heap m Global data follows the code.

allocation

m What's left — the "heap" - is

Global available for allocation.
Variables

0 Binary Code

Allocating Memory From The Heap

void *malloc(unsigned nbytes)
= Allocates 'nbytes' of memory in the heap.
= Guaranteed not to overlap other allocated memory.
= Returns pointer to the first byte (or NULL if the heap is full).
= Similar to constructor in Java — allocates space.
= Allocated space is uninitialized (random garbage).

Allocating Memory From The Heap

void *malloc(unsigned nbytes)
= Allocates 'nbytes' of memory in the heap.
= Guaranteed not to overlap other allocated memory.
= Returns pointer to the first byte (or NULL if the heap is full).
= Similar to constructor in Java — allocates space.
= Allocated space is uninitialized (random garbage).

void free(void *ptr)
= Frees the memory assigned to ptr.
» The space must have been allocated by malloc.

= No garbage collection in C (or C++).
= Can slowly consume memory if not careful.

Examples: Make a Copy of a String

#include <stdlib.h>
#include <string.h>

/*
* Return a copy of an existing NUL-terminated string.
*/
char *make copy(char *orig) {
char *copy ;

copy = malloc(strlen(orig) + 1) ;

strcpy(copy, orig) ;
return copy ;

Examples: Make a Copy of a String

#include <stdlib.h>
#include <string.h>

/*
* Return a copy of an existing NUL-terminated string.
*/

* * '
char - = (char *orig) { Uninitialized pointer - until
Char *copy , we assign something to it

_ ~ we have NO idea where it
copy = malloc(strlen(orig) + 1) ; points.

strcpy(copy, orig) ;
return copy ;

Examples: Make a Copy of a String

#include <stdlib.h> Allocate space and assign

#include <string.h> address of first byte to
pointer <copy>

/*
* Return a copy of an existi
*/

char *make copy(char *ori

char *copy ;

(:Egﬁy = malloc(strlen(orig) +:£z:>

strcpy(copy, orig) ;
return copy ;

NUL-terminated string.

Examples: Make a Copy of a String

#include <stdlib.h>

#include <string.hs Enough space to hold the
g- characters in <orig> plus

the terminating NUL

/*
* Return a copy of an existing
*/

char *make copy(char *orig)

char *copy ;

copy = malloc(EEEien(origi:E:E) ;

strcpy(copy, orig) ;
return copy ;

L-terminated string.

Examples: Make a Copy of a String

#include <stdlib.h>
#include <string.h>

/*
* Return a copy of an existing NUL-terminated string.
*/
char *make copy(char *orig) {
char *copy ;

copy = malloc(strlen(orig) + 1) ;
Once <copy> points to some

t rcpy(copy, o rlg>< space we can copy <orig> to
that space.

Examples: Make a Copy of a String

#include <stdlib.h>
#include <string.h>

/*
* Return a copy of an existing NUL-terminated string.
*/
char *make copy(char *orig) {
char *copy ;

copy = malloc(strlen(orig) + 1) ;
Return the pointer to the

strc opy, orig) ; allocated space with the
@%%4 desired string copy.

} The caller now "owns" this
space.

Examples: Catenate 2 Strings

/*
* Return a pointer to concatenated strings.
*/
char *catenate(char *sl, char *s2) {
char *cat ;
int space needed = strlen(sl) + strlen(s2) + 1 ;

cat = malloc(space needed) ;

strcpy(cat, sl) ;
strcpy(cat + strlen(sl), s2) ;

return cat ;

Examples: Catenate 2 Strings

/*
* Return a pointer to concatenated strings.

X
/ Number of bytes needed

X % *
char *catenate(char *sl, Cha:‘gizl‘J;—————forZSumgs+4VUL
char_*cat

<int space needed = strlen(sl) + strlen(s2) + 1 ;>

cat = malloc(space needed) ;

strcpy(cat, sl) ;
strcpy(cat + strlen(sl), s2) ;

return cat ;

Examples: Catenate 2 Strings

/*
* Return a pointer to concatenated strings.
*/

char *catenate(char *sl, char *s2) {

char *cat ;
int space needed = strlen(sl) + strlen(s2) + 1 ;

Allocate the space and

@: malloc(space_neededD assign the address to

<cat>.

strcpy(cat, sl) ;
strcpy(cat + strlen(sl), s2) ;

return cat ;

Examples: Catenate 2 Strings

/*
* Return a pointer to concatenated strings.
*/
char *catenate(char *sl, char *s2) {
char *cat ;
int space needed = strlen(sl) + strlen(s2) + 1 ;

cat = malloc(space needed) ;

Copy over the
first string <s1>

strcpy(cat, sl) ;
str strlen(sl), s2) ;

return cat ;

Examples: Catenate 2 Strings

/*
* Return a pointer to concatenated strings.
*/

char *catenate(char *sl, char *s2) {

char *cat ;
int space needed = strlen(sl) + strlen(s2) + 1 ;

cat = malloc(space needed) ;

strc —
- Add string <s2> to the
+
Gtrepy(cat strlen(sl), s2) ’:Nh_____endofmecomed<sr>

return cat ;

Examples: Catenate 2 Strings

/*
* Return a pointer to concatenated strings.
*/
char *catenate(char *sl, char *s2) {
char *cat ;
int space needed = strlen(sl) + strlen(s2) + 1 ;

cat = malloc(space needed) ;

strcpy(cat, sl) ;

strcpy(cat + strlen(sl), s2)
Return the address of the

’
final concatenated strings.
return cat ;

} Caller now "owns" this space.

Example: Client Side

char *pl = make copy("Hello, ") ;
char *p2 = make copy("world!") ;
char *p3 = catenate(pl, p2) ;

catenate("Hello, ", "world!'") ;

char *p4

Example: Client Side

ar *pl = make copy("Hello, ") Make copies of two
char *p2 = make copy("world!") ; constant strings.

char *p3 = catenate(pl, p2) ;

char *p4 = catenate("Hello, ", "world!") ;

Example: Client Side

char *pl
char *p2

char *p4

make copy("Hello, ") ;
make copy("world!") ;

Concatenate the two
catenate(pl, p2)><——- copies.

catenate("Hello, ", "world!'") ;

Example: Client Side

char *pl = make copy("Hello, ") ;
char *p2 = make copy("world!") ;
char *p3 = catenate(pl, p2) ;

Cchar *p4

. 0o | Concatenate the two
catenate("Hello, ", "world!") ; constant strings.

Example: Client Side

char *pl = make copy("Hello, ") ;

char *p2 = make copy("world!") ;

char *p3 = catenate(pl, p2) ;

char *p4 = catenate("Hello, ", "world!") ;

So what is the difference between the 2 calls to catenate?

Example: Client Side

char *pl = make copy("Hello, ") ;

char *p2 = make copy("world!") ;

char *p3 = catenate(pl, p2) ;

char *p4 = catenate("Hello, ", "world!") ;

So what is the difference between the 2 calls to catenate?
The constant strings have preallocated static storage.
The dynamic strings (p1 and p2) are in dynamically allocated space.

Example: Client Side

char *pl = make copy("Hello, ") ;

char *p2 = make copy("world!") ;

char *p3 = catenate(pl, p2) ;

char *p4 = catenate("Hello, ", "world!") ;

So what is the difference between the 2 calls to catenate?
The constant strings have preallocated static storage.
The dynamic strings (p1 and p2) are in dynamically allocated space.

Dynamically allocated space must eventually be freed or memory
will slowly fill up with unused garbage.

Example: Client Side

char *pl = make copy("Hello, ") ;

char *p2 = make copy("world!") ;

char *p3 = catenate(pl, p2) ;

char *p4 = catenate("Hello, ", "world!") ;

So what is the difference between the 2 calls to catenate?
The constant strings have preallocated static storage.
The dynamic strings (p1 and p2) are in dynamically allocated space.

Dynamically allocated space should eventually be freed or memory
will slowly fill up with unused garbage.

Example: suppose we only want the concatenated result in p3. Then:
free(pl) ;
free(p2) ;

Problems: Orphan Storage

char *pl ;
pl = catenate("Merchant ", "of ") ;
pl = catenate(pl, "Venice") ;

Problems: Orphan Storage

char *pl ;
pl = catenate("Merchant ", "of ") ;
pl = catenate(pl, "Venice") ;

Result of first call on catenate;

g4 Merchant of

Problems: Orphan Storage

char *pl ;
pl = catenate("Merchant ", "of ") ;
pl = catenate(pl, "Venice") ;

Result of first call on catenate;

g4 Merchant of

Result of second call on catenate:

pl Merchant of

Merchant of Venice

Problems: Orphan Storage

char *pl ;
pl = catenate("Merchant ", "of ") ;
pl = catenate(pl, "Venice") ;

Result of first call on catenate;

g4 Merchant of

Result of second call on catenate:

Permanently lost
memory!

Merchant of Venice

Problems: Dangling Reference

char *pl ;
char *p2 ;
pl = catenate("Merchant ", "of ") ;

free(pl) ;
. p1l not changed . . .
p2 = make copy(pl) ;

Problems: Dangling Reference

char *pl ;
char *p2 ; .
pl = catenate("Merchant ", "of ") ; <— Allocate space assigned to pl

free(pl) ;
. p1l not changed .
p2 = make copy(pl) ;

Problems: Dangling Reference

char *pl ;

char *p2 ;

pl = catenate("Merchant ", "of ") ;

free(pl) ; < Free up space assigned to pl

. p1l not changed .
p2 = make copy(pl) ;

Problems: Dangling Reference

char *pl ;
char *p2 ;
pl = catenate("Merchant ", "of ") ;

free(pl) ;
. p1l not changed .

p2 = make copy(pl) ; < Reference to deallocated space!

Moral of Our Story

Moral of Our Story

THINK!

Moral of Our Story

THINK!

- Are you interested in the pointer or in what it points to?

Moral of Our Story

THINK!

- Are you interested in the pointer or in what it points to?

Random hacking won't work! You'll just tie yourself into
Knots.

Moral of Our Story

THINK!

- Are you interested in the pointer or in what it points to?

Random hacking won't work! You'll just tie yourself into
Knots.

MJL: After 45+ years in the field, | still have to reason
carefully when using pointers - and | still make mistakes!

Moral of Our Story

THINK!

Are you interested in the pointer or in what it points to?

Random hacking won't work! You'll just tie yourself into
Knots.

MJL: After 45+ years in the field, | still have to reason
carefully when using pointers - and | still make mistakes!

If you are confused, lost, or bewildered: ask for help - all
professionals need help at times.

Moral of Our Story

THINK!

- Are you interested in the pointer or in what it points to?

Random hacking won't work! You'll just tie yourself into
Knots.

MJL: After 45+ years in the field, | still have to reason
carefully when using pointers - and | still make mistakes!

If you are confused, lost, or bewildered: ask for help - all
professionals need help at times.

« BUT: Be ready to explain why you did what you did.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

