
Introduction to Ruby

SWEN-250
Personal Software Engineering

A Bit of History

• Yukihiro "Matz'' Matsumoto
– Created a language he liked to work in.

– Been around since mid-90s.

– Caught on in early to mid 00s.

• Lineage
– Smalltalk – dynamic, OO-centric

– CLU – yield to blocks

– Pascal – basic concrete syntax

– AWK / Python / Perl – scripting & regular expressions

– Matz's own predilections

Ruby Characteristics
• Everything is an object – everything.

– 3.times { puts "hello" }
– "Mike is smart".sub(/Mike/, "Pete")
– str = str[0..9] unless str.length < 10

• Every statement is an expression:
– Generally the last value computed.
– No need for return – but it's there anyway.

• Rich built in data types:

String
Array
Hash
RegExp

Range
Unbounded numbers (factorial)
Blocks & procs
Anonymous functions

Exploring Ruby

• ri – Ruby information

• irb – Interactive Ruby

• Script files: filename.rb

Ruby Control Structures: Selection

if condition

statements

elsif condition

statements

else

statements

end

unless condition

statements

end

Conditions in Ruby
Comparisons, etc., return a boolean:

true (the only member of TrueClass)

false (the only member of FalseClass)

Evaluating conditions
false evaluates to false.

nil evaluates to false.

Everything else is true (including 0).

Statement Modifiers (a la Perl)

statement if condition

statement unless condition

Ruby Control Structures: Loops

while condition

statements

end

until condition

statements

end

Early Termination

next

break

redo

begin

statements

end while condition

begin

statements

end until condition

We don't need
no stinkin'

loops!

Iterators

• Explict loops are rare in Ruby

• Instead, we usually use iterators
– Iterators are defined on collection classes

– "Push" elements into a block one at a time.

– The basic iterator is each.

– Show with arrays (the simplest collection)

fibo = [1, 2, 3, 5, 8]

fibo.each { | value | puts "The next value is #{value }" }

fibo.each_index { | i | puts "fibo[#{i}] = #{fibo[i]}" }

fibo.select { | value | value % 2 == 1 }

fibo.inject(0) { | sum, value | sum += value }

puts "Total = #{fibo.inject(0) { | s, v | s += v }}"

But, For Completeness
• loop

loop { puts "forever" }
loop do

line = gets
break if ! line
puts line

end

• for statement

for v in
collection

statements
end

collection.each do | v |
statements

end

Strings

• Literals
"abcdef" vs. 'abcdef' %q{xyz#{1}}  non-interpolate String
"abc #{3 % 2 == 1} def" %Q{xyz#{1}}  interpolate String

• Operators
+ and += s1 = "a" + "b" ; s1 += "c"
* "oops! " * 3
[] should be obvious, but "abcd"[1..2]
== < <=> comparisons
=~ and !~ r.e. match (and not match)

• Some of the methods (many have ! variants)
capitalize sub(r.e, str)
downcase include?(str)
upcase index(str or r.e.)

Strings – Hard (‘) vs Soft (“) Quotes

puts "Betty's pie shop" VS puts 'Betty\'s pie shop'

Because "Betty's" contains an apostrophe, which is the same character as the single quote, in the

second line we need to use a backslash to escape the apostrophe so that Ruby understands that the

apostrophe is in the string literal instead of marking the end of the string literal. The backslash followed

by the single quote is called an escape sequence.

Single quotes

Single quotes only support two escape sequences: \' – single quote and \\ – single backslash

Except for these two escape sequences, everything else between single quotes is treated literally.

Double quotes (typically used)

Double quotes allow for many more escape sequences than single quotes. They also allow you to

embed variables or Ruby code inside of a string literal – this is commonly referred to as interpolation.

puts "Enter name"

name = gets.chomp puts "Your name is #{name}"

https://www.thoughtco.com/string-literals-2908302

http://en.wikipedia.org/wiki/escape_sequence
http://en.wikibooks.org/wiki/Ruby_Programming/Strings#Interpolation
https://www.thoughtco.com/string-literals-2908302

Arrays

• Literals
a = [1, "foo", [6, 7, 8], 9.87]
b = %w{ now is the time for all good men }  Interpolated array of words

• Operators
& (intersection) + (catenation) - (difference)
* int (repetition) * str (join w/str as separator)
[] []= as expected for simple indices
<< obj (push on end)

• Some of the methods
[1, "hello", 3].collect { |v| v * 2 } # alias map
[1, 2, 5].include?(2)
[1, 2, 5].first [1, 2, 5].last
[1, 2, 5].length [1, 2, 5].empty?

Hashes

• Literals
{ "door" => "puerta", "pencil" => " lapiz" }
new Hash(default)

• Operators
h[key] h[key] = value

• Some methods
each each_key each_value
empty? has_key? has_value? size
keys (returns array) values (returns array)
sort (returns an array of 2-element arrays)
sort { |p1, p2| expression returning -1, 0, +1 }

I/O

• Class File
f = File.new(name, mode)

• name is a string giving the file name (host dependent).
• mode is an access string: "r", "rw", "w", "w+"

f.close
f.puts, f.printf, f.gets, etc.

• puts, printf are implicitly prefixed by $stdout.
• gets is implicitly prefixed by $stdin

File.open(name, mode) block – open the file name, call block with the
open file, close file when block exits.

• Class Dir
d = Dir.new(name) – open named directory.
d.close
Dir.foreach(name) block – pass each file name to block.

RegExps

• Literals

/regular expression/

%r@regular expression@ delimiter is @

/regular expression/i case insensitive

• Resource
https://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm

• Rubular http://rubular.com/

https://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://rubular.com/

RegExps Examples

'Some cats here'.gsub(/cats/,'dogs')

'xxAAyyBBzz'.gsub(/A+[^B]*B+/,'\&<->\&')

'xxAAyyBBzz'.gsub(/(A+)([^B]*)(B+)/,'\3\2\1')

'xx(AA)Azz'.gsub(/\(A+\)/,'###')

Miscellaneous (1)

• Functions

– call: puts "abc" or puts("abc")

– define:

def putNtimes(string, count)

puts string * count

end

• Requiring modules

require string

• Looks for string.rb and imports whatever is in there.

• Typically service functions, classes, etc.

• Looks in "standard" locations as well as current directory.

Example: require 'pp'

• Makes a function pp available.

• Similar to puts, but presents structures in a nested, easier to read format.

Miscellaneous

• Symbols

– :foobar, :myname

– like a string but unique, immutable, and fast

– Often used as hash keys, identifiers, etc.

• Duck typing: "If it looks like a duck . . ."

def putlengths anArray

anArray.each { |x| puts x.length }

end

putlengths [[1, 2, 3], "abcde", {"a" => "b", "c" => "d"}]

ON TO THE ACTIVITY

