
Unit Testing in Ruby

SWEN-250
Personal Software Engineering

Testing, 1 – 2 – 3 – 4, Testing…

What Does a Unit Test Test?

• The term “unit” predates the O-O era.

• Unit – “natural” abstraction unit of an O-O
system: class or its instantiated form, object.

• Unit Tests – verify a small chunk of code,
typically a path through a method or function.

• Not application level functionality.

Unit Testing Review

• Test a cohesive functional entity:
– Class

– Stand alone function or functions

• Verification testing – does the entity do what
it's supposed to do.

• Greatly facilitated by unit test frameworks.
– JUnit for Java

– NUnit for .NET

– MiniTest::Test for Ruby

How Do We Unit Test?

• Print Statements (diffs against benchmarks)

• Debuggers – examine variables, observe
execution paths.

• Typically done by unit developer.

• Best benefit if running of tests is automated.

• Tests best run in isolation from one another.

• Tests built incrementally as product code is
developed.

The Typical Test Cycle

• Develop a suite of test cases

• Create some test fixtures to support the
running of each test case.

• Run the test – capture test results.

• Clean-up fixtures, if necessary.

• Report and analyze the test results.

Why is Unit Testing Good?

• Identifies defects early in the development
cycle.

• Many small bugs ultimately leads to chaotic
system behavior

• Testing affects the design of your code.

• Successful tests breed confidence.

• Testing forces us to read our own code –
spend more time reading than writing

• Automated tests support maintainability and
extendibility.

Why Don’t We Unit Test?

• “Coding unit tests takes too much time”

• “I’m to busy fixing bugs to write tests”

• “Testing is boring – it stifles my creativity”

• “My code is virtually flawless…”

• “Testing is better done by the testing
department”

• “We’ll go back and write unit tests after we
get the code working”

Basic xUnit Components

• Create a test class that extends class Test

• Create a testxxx() method for each individual
test to be run.

• Create a test fixture – resources needed to
support the running of the test.

• Write the test, collect interesting test behavior

• Tear down the fixture (if needed)

• Run the tests.

Key xUnit Concepts

• assert -

– assertEquals(expected, actual) – also NotEquals

– assertNull(actual result) – also NotNull

– assertTrue(actual result) - also False

• failures –

– Exceptions raised by asserts (expected)

• errors –

– Ruby runtime exceptions (not expected)

Unit Testing in Ruby

• MiniTest::Test
– All unit test classes inherit from this class

– Example: class MyClass < MiniTest::Test

– setup / teardown

– test* methods run in random order

• Assertions (change assert to refute for negative)
– assert(boolean, [message])

– assert_equal(exp, act, [message])

– assert_raises(Exception) block

– assert_nil(obj, [message])

– Full list in
http://ruby-doc.org/stdlib-2.0.0/libdoc/minitest/rdoc/MiniTest/Assertions.html

http://ruby-doc.org/stdlib-2.0.0/libdoc/minitest/rdoc/MiniTest/Assertions.html

Queue: (queue.rb)
class Queue

Exception class for taking values from an empty queue.
class Empty < StandardError
def initialize
super("Empty queue")

end
end

Initialization
def initialize
@contents = Array.new
self

end

Queue is empty if its size is zero
def empty?
size == 0

end

Queue size - number of elements
def size
@contents.size

end

unit_test_files/queue.rb

Queue: (queue.rb)

Add a value to the tail of the queue
def tail= value
@contents[@contents.size] = value
value

end

Return the first element in the queue without removing it
def peek
raise Empty if empty?
@contents[0]

end

Return and remove the first queue element
def head
value = peek
@contents.delete_at(0)
value

end
end

unit_test_files/queue.rb

TestQueue: (test_queue.rb)
require ‘minitest/autorun'
require_relative ‘queue'

class TestQueue < MiniTest::Test
def setup
@tq = Queue.new

end

Check proper empty queue behavior
def test_new_queue
assert(@tq.size == 0, "New queue size not zero")
assert(@tq.empty?, "New queue not empty")
assert_raises(Queue::Empty) { @tq.peek }
assert_raises(Queue::Empty) { @tq.head }

end

unit_test_files/test_queue.rb

TestQueue: (test_queue.rb)
Check proper FIFO behavior. Must end with an empty queue.
def test_fifo_check
test_values = %w{ A B C } # init an array of three values
test_values.each { |v| @tq.tail = v } # add to the queue

size = @tq.size # expect 3 for the queue size
tvlen = test_values.length
assert(size == tvlen,

"#{tvlen} element queue gives size of #{size}")
refute(@tq.empty?, "Non-empty queue reports empty")

#Iterate through the array and remove each one entry
test_values.each do |v|
qv = nil #declare variable to pass between assertions
qv = @tq.peek # no exception if code is correct
assert_equal(v, qv, '@tq.peek:')
qv = @tq.head
assert_equal(v, qv, '@tq.head:')

end

assert_raises(Queue::Empty) { @tq.peek } #empty now
assert_raises(Queue::Empty) { @tq.head }

end
end

unit_test_files/test_queue.rb

