Unit Testing in Ruby

SWEN-250
Personal Software Engineering

¥ Testing, 1 -2 -3 —4, Testing...

Rochester Institute
of Technology

What Does a Unit Test Test?

 The term “unit” predates the O-0O era.

e Unit — “natural” abstraction unit of an O-0O
system: class or its instantiated form, object.

e Unit Tests — verify a small chunk of code,
typically a path through a method or function.

* Not application level functionality.

@ Unit Testing Review

Software Engineering

e Test a cohesive functional entity:
— Class
— Stand alone function or functions
e Verification testing — does the entity do what
it's supposed to do.
* Greatly facilitated by unit test frameworks.
— JUnit for Java

— NUnit for .NET
— MiniTest::Test for Ruby

How Do We Unit Test?

* Print Statements (diffs against benchmarks)

 Debuggers — examine variables, observe
execution paths.

e Typically done by unit developer.
* Best benefit if running of tests is automated.
e Tests best run in isolation from one another.

e Tests built incrementally as product code is
developed.

@ The Typical Test Cycle

Software Engineering

Rochester Institute
of Technology

* Develop a suite of test cases

* Create some test fixtures to support the
running of each test case.

* Run the test — capture test results.
* Clean-up fixtures, if necessary.
* Report and analyze the test results.

Why is Unit Testing Good?

ldentifies defects early in the development
cycle.

Many small bugs ultimately leads to chaotic
system behavior

Testing affects the design of your code.
Successful tests breed confidence.

Testing forces us to read our own code —
spend more time reading than writing

Automated tests support maintainability and
extendibility.

Why Don’t We Unit Test?

* “Coding unit tests takes too much time”

* “I'm to busy fixing bugs to write tests”

* “Testing is boring — it stifles my creativity”
* “My code is virtually flawless...”

 “Testing is better done by the testing
department”

« “We’ll go back and write unit tests after we
get the code working”

@ Basic xUnit Components

Software Engineering
Rochester Institute
of Technology

 Create a test class that extends class Test

* Create a testxxx() method for each individual
test to be run.

 Create a test fixture — resources needed to
support the running of the test.

* Write the test, collect interesting test behavior
 Tear down the fixture (if needed)
* Run the tests.

Key xUnit Concepts

e assert -
— assertEquals(expected, actual) — also NotEquals
— assertNull(actual result) — also NotNull
— assertTrue(actual result) - also False

e failures —

— Exceptions raised by asserts (expected)

* errors —
— Ruby runtime exceptions (not expected)

@ Unit Testing in Ruby

Software Engineering

Rochester Institute
of Technology

* MiniTest::Test
— All unit test classes inherit from this class
— Example: class MyClass < MiniTest::Test
— setup / teardown
— test* methods run in random order

e Assertions (change assert to refute for negative)
— assert(boolean, [message])
— assert_equal(exp, act, [message])
— assert_raises(Exception) block
— assert_nil(obj, [message])

— Full list in
http://ruby-doc.org/stdlib-2.0.0/libdoc/minitest/rdoc/MiniTest/Assertions.html|

http://ruby-doc.org/stdlib-2.0.0/libdoc/minitest/rdoc/MiniTest/Assertions.html

o)

Queue: (queue.rb)

Software Engineering

Rochester Institute C-I ass Queue

of Technology

Exception class for taking values from an empty queue.
class Empty < StandardeError
def initialize
super("Empty queue™)
end
end

Initialization
def initialize
@contents = Array.nhew

self
end

Queue is empty if its size is zero
def empty?

size ==
end

Queue size - number of elements
def size

@contents.size
end

unit_test_files/queue.rb

@ Queue: (queue.rb)

Software Engineering

Rochester Institute
of Technology

Add a value to the tail of the queue

def tail= value
@contents[@contents.size] = value
value

end

Return the first element in the queue without removing it
def peek

raise Empty if empty?

@contents[0]
end

Return and remove the first queue element
def head
value = peek
@contents.delete_at(0)
value
end
end

unit_test_files/queue.rb

S]
TestQueue: (test queue.rb)

Software Engineering

Rochester Institute
of Technology

require ‘minitest/autorun’
require_relative ‘queue’

class TestQueue < MiniTest::Test

def setup
@tq = Queue.new
end

Check proper empty queue behavior

def test_new_queue
assert(@tg.size == 0, "New queue size not zero")
assert(@tg.empty?, "New queue not empty")
assert_raises(Queue: :Empty) { @tqg.peek }
assert_raises(Queue: :Empty) { @tq.head }

end

unit_test_files/test_queue.rb

S

Software Engineering

Rochester Institute
of Technology

TestQueue: (test queue.rb)

Check proper FIFO behavior. Must end with an empty queue.

def test_fifo_check

test_values = %w{ A B C } # init an array of three values
test_values.each { |v| @tq.tail = v } # add to the queue

size = @tq.size # expect 3 for the queue size
tvlen = test_values.length
assert(size == tvlen,
"#{tvlen} element queue gives size of #{size}")
refute(@tq.empty?, "Non-empty queue reports empty")

#Iterate through the array and remove each one entry
test_values.each do |v]|
gv = nil #declare variable to pass between assertions
qv = @tq.peek # no exception if code 1is correct
assert_equal(v, qv, '@tq.peek:')
gv = @tq.head
assert_equal (v, qv, '@tq.head:")
end

assert_raises(Queue: :Empty) { @tqg.peek } #empty now
assert_raises(Queue: :Empty) { @tg.head }

end

end

unit_test_files/test_queue.rb

