
SWEN-250: Personal Software
Engineering

Other Useful Statements and
Database Joins

SWEN-250
Personal Software Engineering

Overview

• Other Useful Statements:

• SELECT Functions

• SELECT Like

• ORDER BY

• LIMIT

• UPDATE

• DELETE

• ALTER TABLE

• DROP TABLE

• Database Info:

• .tables

• .schema

• Joins:

• LEFT JOIN

• RIGHT JOIN

• INNER JOIN

• FULL OUTER JOIN

SWEN-250
Personal Software Engineering

Other Useful Statements

SWEN-250
Personal Software Engineering

SELECT AVG(grade) FROM students;
SELECT SUM(grade) FROM students;
SELECT MIN(grade) FROM students;
SELECT MAX(grade) FROM students;
SELECT count(id) FROM students;

SELECT Functions

sqlite> select COUNT(*) FROM Player;
COUNT(*)
125
sqlite> select SUM(age) FROM Player;
SUM(age)
3560
sqlite> select AVG(age) FROM Player;
AVG(age)
28.48
sqlite> select MIN(age) FROM Player;
MIN(age)
20
sqlite> select MAX(AGE) FROM Player;

There are various functions that you can apply to the values returned from a select
statement (many more on the reference pages).

SWEN-250
Personal Software Engineering

SELECT * FROM Player WHERE name LIKE "K%";

SELECT Like

sqlite> SELECT * FROM Player WHERE name LIKE "K%";
name|position|number|team|age
Koji Uehara|1|19|Red Sox|40
Kevin Gausman|1|39|Orioles|24
Kevin Pillar|7|11|Blue Jays|26
Kevin Jepsen|1|40|Rays|30

You can use like to do partial string matching. The '%;' character acts like a wild card.
The above will select all players whose name begins with K.

SWEN-250
Personal Software Engineering

SELECT * FROM Player ORDER BY name;

ORDER BY

sqlite> SELECT * FROM Player ORDER BY name;
Aaron Loup|1|62|Blue Jays|27
Aaron Sanchez|1|41|Blue Jays|22
Adam Jones|8|10|Orioles|29
Adam Warren|1|43|Yankees|27
...
Wei-Yin Chen|1|16|Orioles|30
Xander Bogaerts|6|2|Red Sox|22
Xavier Cedeno|1|31|Rays|28
Zach Britton|1|53|Orioles|27

Putting 'ORDER BY' at the end of a select statement will sort the output by the column
name. There is also a 'REVERSE ORDER BY' which does the opposite sorted order
(note that it looks like this is not working in sqlite3).

SWEN-250
Personal Software Engineering

SELECT * FROM Player ORDER BY team, name

ORDER BY

sqlite> SELECT * FROM Player ORDER BY team, name LIMIT 10;
Aaron Loup|1|62|Blue Jays|27
Aaron Sanchez|1|41|Blue Jays|22
Brett Cecil|1|27|Blue Jays|28
Dalton Pompey|8|45|Blue Jays|22
Daniel Norris|1|32|Blue Jays|21
Danny Valencia|5|23|Blue Jays|30
Devon Travis|4|29|Blue Jays|24
...

You can order by multiple columns. The above will first sort the rows by team, and then
within each team sort by name.

SWEN-250
Personal Software Engineering

SELECT * FROM Player ORDER BY team, name LIMIT 10;

SELECT LIMITs

sqlite> SELECT * FROM Player ORDER BY team, name LIMIT 10;
Aaron Loup|1|62|Blue Jays|27
Aaron Sanchez|1|41|Blue Jays|22
Brett Cecil|1|27|Blue Jays|28
Dalton Pompey|8|45|Blue Jays|22
Daniel Norris|1|32|Blue Jays|21
Danny Valencia|5|23|Blue Jays|30
Devon Travis|4|29|Blue Jays|24
Drew Hutchison|1|36|Blue Jays|24
Edwin Encarnacion|3|10|Blue Jays|32
Jeff Francis|1|35|Blue Jays|34

You can add a LIMIT qualifier at the end of a SELECT statement to only show the first X
rows returned.

SWEN-250
Personal Software Engineering

SELECT * FROM Player ORDER BY team, name LIMIT 20, 10;

SELECT LIMITs

sqlite> SELECT * FROM Player REVERSE ORDER BY team, name LIMIT 20, 10;
Miguel Castro|1|51|Blue Jays|20
R.A. Dickey|1|43|Blue Jays|40
Roberto Osuna|1|54|Blue Jays|20
Russell Martin|2|55|Blue Jays|32
Ryan Goins|4|17|Blue Jays|27
Adam Jones|8|10|Orioles|29
Alejandro De Aza|7|12|Orioles|30
Brad Brach|1|35|Orioles|28
Brian Matusz|1|17|Orioles|28
Bud Norris|1|25|Orioles|30

You can also add an offset to the LIMIT statement. The above skips the first 20 rows,
then displays the following 10, i.e., it displays rows 20-29 (assuming the first is row 0).

SWEN-250
Personal Software Engineering

UPDATE

UPDATE (along with where) allows you to update values in the table.
If you don’t have a WHERE clause, it will update all values to the
given one.

UPDATE Player SET age = 99 WHERE name = "Kevin Kiermaier";

sqlite> SELECT * FROM Player WHERE name = "Kevin Kiermaier";
name|position|number|team|age
Kevin Kiermaier|9|39|Rays|24

sqlite> UPDATE Player SET age = 99 WHERE name = "Kevin Kiermaier";

sqlite> SELECT * FROM Player WHERE name = "Kevin Kiermaier";
name|position|number|team|age
Kevin Kiermaier|9|39|Rays|99

SWEN-250
Personal Software Engineering

UPDATE

You can also use some math (and other functions) within your
UPDATE statements. The above reduces the selected players ages
by 10.

UPDATE Player SET age = age - 10 WHERE name LIKE "K%";

sqlite> SELECT * FROM Player WHERE name like "K%";
name|position|number|team|age
Koji Uehara|1|19|Red Sox|40
Kevin Gausman|1|39|Orioles|24
Kevin Pillar|7|11|Blue Jays|26
Kevin Jepsen|1|40|Rays|30
sqlite>
sqlite> UPDATE Player SET age = age - 10 WHERE name LIKE "K%";
sqlite>
sqlite> SELECT * FROM Player WHERE name like "K%";
name|position|number|team|age
Koji Uehara|1|19|Red Sox|30
Kevin Gausman|1|39|Orioles|14
Kevin Pillar|7|11|Blue Jays|16
Kevin Jepsen|1|40|Rays|20

SWEN-250
Personal Software Engineering

DELETE

DELETE allows you to delete rows from the table that satisfy the
WHERE clause.

DELETE FROM Player WHERE name = "Kevin Kiermaier";

sqlite> SELECT * FROM Player WHERE name = "Kevin Kiermaier";
name|position|number|team|age
Kevin Kiermaier|9|39|Rays|99
sqlite>
sqlite> DELETE FROM Player WHERE name = "Kevin Kiermaier";
sqlite>
sqlite> SELECT * FROM Player WHERE name = "Kevin Kiermaier";
sqlite>

SWEN-250
Personal Software Engineering

ALTER TABLE

ALTER TABLE allows you to
modify the columns within a
table. It has a lot of options and
the above is an example of
adding a new column (called city
of type text) to a table.

ALTER TABLE Player ADD COLUMN
city text;

sqlite> ALTER TABLE Player ADD COLUMN
city text;
sqlite>
sqlite> select * from player limit 5;
name|position|number|team|age|city
Craig Breslow|1|32|Red Sox|34|
Clay Buchholz|1|11|Red Sox|30|
Joe Kelly|1|56|Red Sox|26|
Justin Masterson|1|63|Red Sox|30|
Wade Miley|1|20|Red Sox|28|
sqlite>
sqlite> UPDATE Player SET city =
"Rochester";
sqlite>
sqlite> select * from player limit 5;
name|position|number|team|age|city
Craig Breslow|1|32|Red Sox|34|Rochester
Clay Buchholz|1|11|Red Sox|30|Rochester
Joe Kelly|1|56|Red Sox|26|Rochester
Justin Masterson|1|63|Red Sox|30|Rochester
Wade Miley|1|20|Red Sox|28|Rochester

SWEN-250
Personal Software Engineering

DROP TABLE

DROP TABLE removes a table and all of its entries from the
database. Be very careful when using it!

DROP TABLE Player;

sqlite> DROP TABLE Player;
sqlite> SELECT * FROM Player;
Error: no such table: Player

SWEN-250
Personal Software Engineering

Database Info

SWEN-250
Personal Software Engineering

.tables

In sqlite, the .tables command shows all tables in the database. In
mysql, "show tables;" does the same.

.tables
show tables;

sqlite> .read Baseball-AL-East-2015.sqlite
sqlite>
sqlite> .tables
Coach Player Position Team

SWEN-250
Personal Software Engineering

.schema

In sqlite, the .schema command shows how the specified table
was created. In mysql, you can use "show create table".

.schema Coach
show create table Coach;

sqlite> .schema Coach
CREATE TABLE Coach (
 number INTEGER,
 name TEXT PRIMARY KEY,
 title TEXT,
 team TEXT REFERENCES Team(name)
);
sqlite>
sqlite> .schema Player
CREATE TABLE Player(
 name TEXT,
 position INTEGER REFERENCES Position(posnum),
 number INTEGER,
 team TEXT REFERENCES Team(name),
 age INTEGER,
 PRIMARY KEY(team, number)
);

SWEN-250
Personal Software Engineering

Joins

SWEN-250
Personal Software Engineering

Joins
Joins allow the combination of fields from multiple tables. There
are a number of ways to do this. We'll use the following two tables
as an example (the .sql file is linked on the webpage).
CREATE TABLE T1 (
 v1 text,
 v2 text,
 id int
);

CREATE TABLE T2 (
 v1 text,
 v2 text,
 id int
);

INSERT INTO T1 VALUES("A1", "B1", 1);
INSERT INTO T1 VALUES("C1", "D1", 2);
INSERT INTO T1 VALUES("E1", "F1", 3);
INSERT INTO T1 VALUES("G1", "H1", 4);

INSERT INTO T2 VALUES("A2", "B2", 3);
INSERT INTO T2 VALUES("C2", "D2", 4);
INSERT INTO T2 VALUES("E2", "F2", 5);
INSERT INTO T2 VALUES("G2", "H2", 6);

SWEN-250
Personal Software Engineering

Joins

SWEN-250
Personal Software Engineering

Left Joins
Left Joins take the left table (i.e., the table before the JOIN
statement) as the base and link it to the table on the right.

The first options selects everything in A, with everything
that references with B; with nulls filled in for entries in A
that have no reference to B.

The second option selects everything in A that has no
reference in B.

SELECT T1.v1, T1.v2, T2.v1, T2.v2 FROM T1 LEFT JOIN T2 ON T1.id = T2.id;
A1|B1||
C1|D1||
E1|F1|A2|B2
G1|H1|C2|D2

SELECT T1.v1, T1.v2, T2.v1, T2.v2 FROM T1 LEFT JOIN T2 ON T1.id = T2.id WHERE T2.id IS NULL;
A1|B1||
C1|D1||

SWEN-250
Personal Software Engineering

Right Joins
Right Joins take the Right table (i.e., the table after the JOIN
statement) as the base and link it to the table on the left. They are the
opposite of a left join.

The first options selects everything in B, with everything that
references with A; with nulls filled in for entries in B that have no
reference to A.

The second option selects everything in B that has no reference in A.

Right joins are not yet implemented in sqlite, but you can just use a
left join instead.

Error: near line 29: RIGHT and FULL OUTER JOINs are not currently supported

Error: near line 31: RIGHT and FULL OUTER JOINs are not currently supported

SWEN-250
Personal Software Engineering

Inner Joins
Inner joins are (at least in my experience)
the most useful and most commonly used.

They provide the requested fields that
exist in both A and B given the JOIN
criteria.

SELECT T1.v1, T1.v2, T2.v1, T2.v2 FROM T1 INNER JOIN T2 ON T1.id = T2.id;
E1|F1|A2|B2
G1|H1|C2|D2

SWEN-250
Personal Software Engineering

Outer Joins
Outer joins provide the last options. They can
show either all the entries not referenced in
both tables; or all the entries in both (linked by
the reference when applicable).

These are very rarely used, and not
implemented in many DBs. In part due to how
they can create a massive table of results.

Error: near line 35: RIGHT and FULL OUTER JOINs are not currently supported

Error: near line 37: RIGHT and FULL OUTER JOINs are not currently supported

