
Version (Source Code) Control

SWEN-250



Overview

Motivation – why is version control useful?

Key concepts

Variations on the basic theme

Example version control systems

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 2



Motivation

Progress, far from consisting in change, depends 

on retentiveness. Those cannot remember the past 

are condemned to repeat it.

- George Santayana

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 3



Motivation Scenario: I think this will work

Often we want to try out a change

– Trying a new algorithm or data structure

– Reorganizing code for clarity

– Experimenting with a half-cocked idea

– Seeing if the language works like you expect

It’s a lot easier if you can perform such experiments 
confidently.

– That is, you can get back to where you started

– VCS can provide a virtual trail of breadcrumbs

– If you botch things, you can return to a stable state

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 4



Motivation Scenario: How did I get here?

Like waypoints on a GPS system.

– Allows you to track progress

– You can see how your program evolved and grew, step-by-
step

– You can see where you made mistakes and how long it 
took you to find and fix them

The fancy software engineering term is traceability.

– Important for scheduling, tracking, and planning

– Allows you to go back to a previous version (“hey, what did 
we ship for version 1.5.2.9.5?”)

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 5



Motivation Scenario: Reconstruct the Past

Teacher: “So, show me – what was the code like 
before you made this change?”

You: “Ummm...”

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 6



Motivation: Pragmatic Programmers

So let it be written …

So let it be done!

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 7

Always Use Source Code Control

Tip 23



Key Concepts*

A repository is a designated disk location (directory) 
where the files and “breadcrumbs” for a project are 
kept.

The work area is a location (directory) where the 
activities of editing, compiling, testing, etc. take place.

Files are periodically checked in to the repository from 
the work area, creating a new version.

Files can be checked out of the repository (to start 
work on existing project, or to restore the state of the 
work area to a previous state).

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 8

* Terminology slightly different with git



Check a File into a Repository

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 9

Repository Working Area

The quick brown
fox jumped over
the lazy dog.

File.txt

check File.txt into the Repository

Repository Working Area

The quick brown
fox jumped over
the lazy dog.

File.txt

The quick brown
fox jumped over
the lazy dog.

File.txt (1)



Check a Changed File into a Repository

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 10

check File.txt into the Repository

Repository Working Area

The quick black
fox jumped over
the lazy cat.

File.txt

The quick brown
fox jumped over
the lazy dog.

File.txt (1)

Repository Working Area

The quick black
fox jumped over
the lazy cat.

File.txt

The quick brown
fox jumped over
the lazy dog.

File.txt (1)

The quick black
fox jumped over
the lazy cat.

File.txt (2)



Revert to a Previous Version in a Repository

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 11

check version 1 of File.txt out to the Work Area

Repository Working Area

The quick black
fox jumped over
the lazy cat.

File.txt

The quick brown
fox jumped over
the lazy dog.

File.txt (1)

Repository Working Area

The quick brown
fox jumped over
the lazy dog.

File.txt

The quick brown
fox jumped over
the lazy dog.

File.txt (1)

The quick black
fox jumped over
the lazy cat.

File.txt (2)



A Potential Problem

We’ll have multiple copies of File.txt that are almost 
the same –won’t this waste space?

Yes – unless we use deltas.
– Usually changes from version to version are small.
– We can save space by only saving the changes (deltas).
– Basically, we need additions, deletions, changes.

Example: a lno appended_text
d lno
c lno start length new_text

With smart differences and compression, deltas 
become very small.

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 12



Check in a Changed File (w/deltas)

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 13

check File.txt into the Repository (using deltas)

Repository (version 1) Working Area

The quick black
fox jumped over
the lazy cat.

File.txt

The quick brown
fox jumped over
the lazy dog.

File.txt (1)

Repository (version 2) Working Area

The quick black
fox jumped over
the lazy cat.

File.txt

The quick brown
fox jumped over
the lazy dog.

File.txt (1)

c 1 11 5 black 
c 3 10 3 cat

File.txt (2)



File vs. Repository Versioning

Versioning by file:

– Each file in repository has its own version number.

– Frequently changed files have higher numbers than stable 
files.

– May be difficult to find all the individual files representing 
one logical version.

Versioning by repository:

– Any changes update the version number of the entire 
repository.

– Easy to find all files comprising a given system version.

– Harder to find specific version of a given file.

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 14



Centralized vs. Distributed Repositories

Centralized:

– One master directory.

– All changes (by any team member) are applied to the 
master.

– Difficult for individuals to leave bread crumbs for their own 
experiments.

Distributed:

– Every developer has own repository.

– Changes are done to local repository.

– If working on a team, periodically PUSH local changes to 
designated central repository.

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 15



Sample of Version Control Systems

• CVS – Concurrent Versioning System
– Centralized
– File versioning
– Used in CS3

• git – from Linus Torvalds, creator of Linux
– Decentralized
– Repository versioning
– Used in this course

• Some others you may encounter
– SVN – Subversion: Centralized, repository versioned
– TFS – Team Foundation Services: Centralized & Distributed, file 

and repo versions
– RCS – Revision Control System: Centralized, file versioned
– SCCS – Source Code Control System: Centralized, file versioned

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 16



Git

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 17

Understanding the machinery to whittle away the 
uncertainty

Been here before? (web comic by XKCD)

https://imgs.xkcd.com/comics/git.png


Git vocabulary

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 18

repository: a place for storing things aka repo. With Git, this means your code folder
clone: Copy all files from a repo to your local drive
head: A “pointer” to the latest code you were working on
add: An action to ask Git to track a file
commit: An action to save the current state to prepare for next step (e.g. push to repo) 
remote: A repository that isn’t local. Can be in another folder or in the cloud (for 
example: Github or gitlab): helps other people to easily collaborate, as they don’t have 
to get a copy from your system — they can just get it from the cloud. Also, ensures you 
have a backup in case you break your laptop
pull: An action to get updated code from the remote
push: An action to send updated code to the remote
merge: An action to combine two different versions of code
status: Displays information about current repository status
log: Show the history of the repo actions



Where is everything?

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 19

$ tree .git/
.git/
├── HEAD
├── config
├── description
├── hooks
│   ├── applypatch-msg.sample
│   ├── commit-msg.sample
│   ├── post-update.sample
│   ├── pre-applypatch.sample
│   ├── pre-commit.sample
│   ├── pre-push.sample
│   ├── pre-rebase.sample
│   ├── pre-receive.sample
│   ├── prepare-commit-msg.sample
│   └── update.sample
├── info
│   └── exclude
├── objects
│   ├── info
│   └── pack
└── refs
├── heads
└── tags

8 directories, 14 files

Introducing the magic 
controlled by a hidden folder: 
.git/
In every git repository, you’ll 
see something like this



A good reference

• https://medium.freecodecamp.org/how-not-to-be-
afraid-of-git-anymore-fe1da7415286

1/15/2020 (c) 2013 RIT Dept. of Software Engineering 20

https://medium.freecodecamp.org/how-not-to-be-afraid-of-git-anymore-fe1da7415286

