
Personal SE

C Struct & Typedef

Make

C Structs

• A struct is a way of grouping named,
heterogeneous data elements that represent a
coherent concept.

C Structs

• A struct is a way of grouping named, heterogeneous data elements that
represent a coherent concept.

• Example:

#define MAXNAME (20)

struct person {

char name[MAXNAME+1] ;

int age ;

double income ;

} ;

C Structs

• Question: What is an object with no methods and only instance variables
public?

• Answer: A struct! (well, sort of).

• A struct is a way of grouping named, heterogeneous data elements that
represent a coherent concept.

• Example:

#define MAXNAME (20)

struct person {

char name[MAXNAME+1] ;

int age ;

double income ;

} ;

naming - the field
names in the struct

C Structs

• Question: What is an object with no methods and only instance variables
public?

• Answer: A struct! (well, sort of).

• A struct is a way of grouping named, heterogeneous data elements that
represent a coherent concept.

• Example:

#define MAXNAME (20)

struct person {

char name[MAXNAME+1] ;

int age ;

double income ;

} ;

heterogeneous - the
fields have different
types

• Question: What is an object with no methods and only instance variables
public?

• Answer: A struct! (well, sort of).

• A struct is a way of grouping named, heterogeneous data elements that
represent a coherent concept.

• Example:

#define MAXNAME (20)

struct person {

char name[MAXNAME+1] ;

int age ;

double income ;

} ;

C Structs

coherent concept -
the information
recorded for a person.

Using Structs
• Declaration:

struct person {

char name[MAXNAME+1] ;

int age ;

double income ;

} ;

• Definitions:

struct person mike,

pete ;

• Assignment / field references ('dot' notation):

mike = pete ;

pete.age = chris.age + 3

Using Structs

• Note: Space allocated for the whole struct at definition.

• Struct arguments are passed by value (i.e., copying)
WRONG

void give_raise(struct person p, double pct) {
p.income *= (1 + pct/100) ;
return ; // Note that return is not needed for void function

}

give_raise(mike, 10.0) ;

RIGHT
struct person give_raise(struct person p, double pct) {

p.income *= (1 + pct/100) ;
return p ; // must return struct person

}

mike = give_raise(mike, 10.0) ;

Symbolic Type Names - typedef

• Suppose we have a pricing system that prices goods by
weight.
– Weight is in pounds, and is a double precision number.

– Price is in dollars, and is a double precision number.

– Goal: Clearly distinguish weight variables from price variables.

Symbolic Type Names - typedef

• Suppose we have a pricing system that prices goods by
weight.
– Weight is in pounds, and is a double precision number.

– Price is in dollars, and is a double precision number.

– Goal: Clearly distinguish weight variables from price variables.

• Typedef to the rescue:
– typedef declaration ;Creates a new "type" with the variable slot in the

declaration.

Symbolic Type Names - typedef

• Suppose we have a pricing system that prices goods by
weight.
– Weight is in pounds, and is a double precision number.

– Price is in dollars, and is a double precision number.

– Goal: Clearly distinguish weight variables from price variables.

• Typedef to the rescue:
– typedef declaration ; Creates a new "type" with the variable slot in the

declaration. Use a “_t” suffix to identify it as a typedef.

• Examples:
typedef double price_t ; // alias for double to declare price variabless
typedef double weight_t ; // alias for double to declare weight variables

price_t p ; // double precision value that's a price
weight_t lbs ; // double precision value that's a weight

typedef In Practice

• Symbolic names for array types

#define MAXSTR (100)

typedef char long_string_t[MAXSTR+1] ;

long_string_t line ;

long_string_t buffer ;

typedef In Practice

• Shorter name for struct types:

typedef struct {

long_string_t label ; // name for the point

double x ; // xcoordinate

double y ; // ycoordinate

} point_t ; // pick a name that suggests it is a struct

point_t origin ;

point_t focus ;

Make and Makefiles

• Problem:
– Program comprises many source files.

Make and Makefiles

• Problem:
– Program comprises many source files.

– Recompiling everything is time-consuming and redundant.

Make and Makefiles

• Problem:
– Program comprises many source files.

– Recompiling everything is time-consuming and redundant.

– Changes to a file may make other files obsolete.

Make and Makefiles

• Problem:
– Program comprises many source files.

– Recompiling everything is time-consuming and redundant.

– Changes to a file may make other files obsolete.

– How can we periodically regenerate the executable doing the
minimum amount of work?

Make and Makefiles

• Problem:
– Program comprises many source files.

– Recompiling everything is time-consuming and redundant.

– Changes to a file may make other files obsolete.

– How can we periodically regenerate the executable doing the
minimum amount of work?

• Solution: make (or ant, rake and other similar programs)

Make and Makefiles

• Problem:
– Program comprises many source files.

– Recompiling everything is time-consuming and redundant.

– Changes to a file may make other files obsolete.

– How can we periodically regenerate the executable doing the
minimum amount of work?

• Solution: make (or ant, rake and other similar programs)
– Record obsolescence dependencies: a Directed Acyclic Graph (DAG)

Make and Makefiles

• Problem:
– Program comprises many source files.

– Recompiling everything is time-consuming and redundant.

– Changes to a file may make other files obsolete.

– How can we periodically regenerate the executable doing the
minimum amount of work?

• Solution: make (or ant, rake and other similar programs)
– Record obsolescence dependencies: a Directed Acyclic Graph (DAG)

– Define commands to recreate obsolete files.

Make and Makefiles

• Problem:
– Program comprises many source files.

– Recompiling everything is time-consuming and redundant.

– Changes to a file may make other files obsolete.

– How can we periodically regenerate the executable doing the
minimum amount of work?

• Solution: make (or ant, rake and other similar programs)
– Record obsolescence dependencies: a Directed Acyclic Graph (DAG)

– Define commands to recreate obsolete files.

– Depth first traversal of the DAG to bring things up-to-date.

What Is A Dependency?

• File A depends on file B if the correctness of A's contents are
affected by changes to B.

• Thus an object file depends on its source:
– A change to the source makes the object file incorrect.

• An object file depends on interfaces its source file uses:
– Interface change may change the meaning of the source code

– E.g., change a configuration constant, a struct, etc.

• An executable program depends on the object code files from
which it is built.

Example

• Program abc made from main.o, util.o, calc.o and io.o.

• main.c includes calc.h, util.h and io.h.

• util.c includes util.h and io.h.

• calc.c includes calc.h.

• io.c includes io.h.

main.c util.c

calc.h io.hutil.h

io.ccalc.c

main.o util.o io.ocalc.o

abc

DEPENDENCY KEY

program to object green
object to source orange
object to interface blue

Dependencies in Makefiles

target: dependency1 dependency2 . . . dependencyN

For our example the dependency lines are

abc: main.o util.o calc.o io.o

main.o: main.c util.h calc.h io.h

util.o: util.c util.h io.h

calc.o: calc.c calc.h

io.o: io.c io.h

Is a Target Up-To-Date?

• A target is up-to-date iff
– It exists (obviously).

– It was modified later than any of its dependencies after they have all
been brought up-to-date.

• What do we do if a file is not up-to-date?
– We run one or more commands to bring it up-to-date.

– For a program, we link the object files.

– For an object file, we recompile its source.

• For make, command lines:
– Follow the dependency line.

– MUST begin with a hard tab (Tab key or CTRL-I).

Completed Makefile for the
Example

abc: main.o util.o calc.o io.o

gcc -o abc –g main.o util.o calc.o io.o

main.o: main.c util.h calc.h io.h

gcc -c –Wall –g main.c

util.o: util.c util.h io.h

gcc -c –Wall –g util.c

calc.o: calc.c calc.h

gcc -c –Wall –g calc.c

io.o: io.c io.h

gcc -c –Wall –g io.c

Assuming Existence of
"Makefile"

make

– Brings the default up to date which is the first target (abc in this case)

make abc
– Specifically brings abc up to date.

– First brings main.o util.o calc.o and io.o up to date

– Then relink abc iff

• abc does not exist

• abc is older than at least one of its dependencies (any of four .o files)

make main.o
– Just brings main.o up to date.

– Any target can be specified.

Things to Note

• Targets need not have any dependencies.

• Targets need not ever really be made – runs
command(s) every time.

• Multiple commands can be run.

• Example: Generic "clean" target:

clean:

rm -f *.o *~* abc

