
Personal SE

Arrays
Pointers
Strings

Array Identifiers & Pointers

char message[] = “Hello” ;

H le l \0o

message

Array Identifiers & Pointers

char message[] = “Hello” ;

H le l \0o

message

Question: So what exactly is message?

Array Identifiers & Pointers

char message[] = “Hello” ;

H le l \0o

message

Question: So what exactly is message?

Answer: In C, an array name is a constant pointer that references the 0
th

element of the array's storage.

Array Identifiers & Pointers

char message[] = “Hello” ;

H le l \0o

message

Question: So what exactly is message?

Answer: In C, an array name is a constant pointer that references the 0
th

element of the array's storage.

Constant means it cannot be changed (just as we can't change the constant 3).

Consequences - Part 1

char message[] = “Hello” ;

H le l \0o

message

What is *message?

Consequences - Part 1

char message[] = “Hello” ;

H le l \0o

message

What is *message?

*message == 'H'

Consequences - Part 1

char message[] = “Hello” ;

H le l \0o

message

What is *message?

*message == 'H'

What is another expression for message?

Consequences - Part 1

char message[] = “Hello” ;

H le l \0o

message

What is *message?

*message == 'H'

What is another expression for message?

message == &message[0]

Consequences - Part 1

char message[] = “Hello” ;

H le l \0o

message

What is *message?

*message == 'H'

What is another expression for message?

message == &message[0]

What is another expression for message[4]?

Consequences - Part 1

char message[] = “Hello” ;

H le l \0o

message

What is *message?

That's right - we can add or subtract an integer and a pointer to get a pointer

to the element a certain distance from the original!

*message == 'H'

What is another expression for message?

message == &message[0]

What is another expression for message[4]?

message[4] == *(message + 4)

Pointer Variables and Arrays - 1

char *hi = “Hello” ;

Creates a constant string “Hello” and initializes the hi pointer to point to

the 'H' (the initial character).

Pointer Variables and Arrays - 1

char *hi = “Hello” ;

Creates a constant string “Hello” and initializes the hi pointer to point to

the 'H' (the initial character).

char message[] = “Greetings!” ;

Allocates space for the array message and initializes its contents to the

string “Greetings!”.

Pointer Variables and Arrays - 1

char *hi = “Hello” ;

Creates a constant string “Hello” and initializes the hi pointer to point to

the 'H' (the initial character).

char message[] = “Greetings!” ;

Allocates space for the array message and initializes its contents to the

string “Greetings!”.

char *p_mesg = message ;

Initializes p_mesg to point to the initial element of message.

Pointer Variables and Arrays - 1

char *hi = “Hello” ;

Creates a constant string “Hello” and initializes the hi pointer to point to

the 'H' (the initial character).

char message[] = “Greetings!” ;

Allocates space for the array message and initializes its contents to the

string “Greetings!”.

char *p_mesg = message ;

Initializes p_mesg to point to the initial element of message.

char ch ;

p_mesg++ ;

ch = *p_mesg ;

Declares ch, advances p_mesg by one element, and sets ch to the

character p_mesg points to (in this case 'r').

Alternatives & Idioms - 1

char *hi = “Hello” ;

char ch0 = hi[1] ; // ch = 'e'

Pointers can be indexed

Alternatives & Idioms - 1

char *hi = “Hello” ;

char ch0 = hi[1] ; // ch = 'e'

Pointers can be indexed

char *hp = hi ; // initially the same as hi

char ch1 ;

ch1 = *hp++ ;

Post-increment: ch1 = *hp then hp += 1 (ch1 == 'H' and hp == hi + 1)

Alternatives & Idioms - 1

char *hi = “Hello” ;

char ch0 = hi[1] ; // ch = 'e'

Pointers can be indexed

char *hp = hi ; // initially the same as hi

char ch1 ;

ch1 = *hp++ ;

Post-increment: ch1 = *p then p += 1 (ch1 == 'H' and p == hi + 1)

char ch2 ;

ch2 = *++hp ;

Pre-increment: hp += 1 then ch1 = *hp (hp == hi + 2 and ch2 == 'l')

Alternatives & Idioms - 1

char *hi = “Hello” ;

char ch0 = hi[1] ; // ch = 'e'

Pointers can be indexed

char *hp = hi ; // initially the same as hi

char ch1 ;

ch1 = *hp++ ;

Post-increment: ch1 = *p then p += 1 (ch1 == 'H' and p == hi + 1)

char ch2 ;

ch2 = *++hp ;

Pre-increment: hp += 1 then ch1 = *hp (hp == hi + 2 and ch2 == 'l')

Also have pre and post decrement with --

Alternatives & Idioms - 2

char *p ;

char ch ;

while(ch = *p++) {

// process characters until end of string.

}

Alternatives & Idioms - 2

char *p ;

char ch ;

while(ch = *p++) {

// process characters until end of string.

}

if(*p) { // true if p points to a “real” character

if(*p != '\0') { // easier to read

Alternatives & Idioms - 2

char *p ;

char ch ;

while(ch = *p++) {

// process characters until end of string.

}

if(*p) { // true if p points to a “real” character

if(*p != '\0') { // easier to read

if(!*p) { // true if p points to a NUL character.

if(*p == '\0') { // easier to read

