COVER FEATURE

Kent Beck
Three Rivers
Institute

Barry Boehm
University of
Southern California

Computer

Agility through

Discipline:
A Dehate

ent says: There are those who see agility in

software development as a tradeoff, a sort

of shaving of the wing spars. By giving up

safety or rigor or accountability, we can

go faster. From inside Extreme Program-
ming, though, “agility or safety” or “agility or dis-
cipline” look like false dichotomies. From inside
Extreme Programming, it seems that the only way
to achieve the results we seek is to
view the world in “both-and”
terms instead of “either-or” terms.
Why this disconnect?

My dictionary (www.m-w.com)
defines discipline as: 3. a field of
study; 4. training that corrects,
molds, or perfects the mental fac-
ulties or moral character; 5. (a)
control gained by enforcing obedience or order; (b)
orderly or prescribed conduct or pattern of behav-
ior; (c) self-control; 6. a rule or system of rules gov-
erning conduct or activity.

Let’s take a look at each of these definitions in the
context of a prototypical Extreme Programming
team.

A field of study. Extreme Programming describes
a set of skills developers or customers should mas-
ter on the way to becoming effective members of a
software development team.

Training that corrects, molds, or perfects the men-
tal faculties or moral character. | won’t make any
claims for moral character, but test-driven devel-
opment, refactoring, pair programming, continu-
ous integration, and weekly planning (with
estimation and tracking) all contribute to “perfect-
ing” mental faculties.

Control gained by enforcing obedience or order.
Extreme Programming fails on this account. The
team is responsible for its own rules. In fact, the first

Agility is only
possible through
greater discipline
on the part of
everyone involved.
—Kent Beck

Published by the IEEE Computer Society

rule of XP is “They’re just rules.” This rule is not an
excuse for unilateral behavior but a reminder that
the team must maintain awareness of its own rules
and continually refine them in the light of experi-
ence.

Orderly or prescribed conduct or pattern of
behavior. The team members know what to expect
of each other, so the team’s behavior is orderly.
However, the people doing the pre-
scribing are the people doing the
doing.

A rule or system of rules govern-
ing conduct or activity. Extreme
Programming certainly is this. XP
teams are conscious of their collec-
tive rules for planning, develop-
ment, integration, and deploy-
ment. As many rules as possible are embedded in
tools. For example, the rule that says no code can
be released without all the tests passing can be
embedded in a script that automatically runs the
tests and only releases changes if the tests all pass.

If Extreme Programming is said to be undisci-
plined, it is only in the sense of “control gained by
enforcing obedience or order.” If this narrow defi-
nition of discipline is used, I say hooray for undis-
ciplined processes. Efforts to force developers and
customers to work according to a procedure devel-
oped by those not immediately responsible for
results have uniformly failed. However, given a
broader view of discipline, Extreme Programming
is far more disciplined than most processes, pro-
viding a clearer collective picture of what activities
are expected and more opportunities for learning.
Indeed, without conforming to these positive senses
of “discipline,” the social contract of Extreme
Programming would rapidly disintegrate.

—Kent Beck

0018-9162/03/$17.00 © 2003 IEEE

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on April 2, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

arry says: Once upon a time, in the land
of Metaphor, there lived a monkey and
an elephant. They both lived on one side
of a wide, swiftly flowing river. On both
sides of the river there were many fruit
trees. The monkey was very agile. He could climb
to the top of the fruit trees and eat as much fruit as
he needed. The elephant was very tall. He could
reach up with his trunk and eat as
much fruit as he needed.

But the trees grew taller. Soon the
elephant could not reach enough
fruit to eat. But he was strong and
self-sufficient. He found that when
he was hungry, he could just pull
down a tree and have fruit to eat.

The monkey watched the elephant
pull down most of the fruit trees. He was not happy.
He said to the elephant, “Don’t do that! I will climb
up the trees and get fruit for you.”

The elephant said, “ I am hungry. I am strong. I
can do things for myself.”

The monkey said, “You dumb elephant. Soon
there will be no trees or fruit for you either.”

The elephant said, “I only work on one problem
at a time. Things may change. Maybe more fruit
trees will come. Or maybe the trees will get shorter.
If they don’t, I'll work out a solution then.”

The monkey had to agree. He only worked on
one problem at a time too.

Soon there were no more fruit trees left on their
side of the river. The elephant said, “I have a solu-
tion. I will go across the river and pull down trees
over there.”

The monkey said, “You dumb elephant. That
didn’t work on this side of the river, and it won’t
work on the other side of the river. You will starve
us both. Let’s duke it out. I am agile and will run
rings around you.”

The elephant said, “That is fine with me. T am
big and strong and I will pulverize you.”

So they began to duke it out. The monkey ran
rings around the elephant. But he was not able to
stop the elephant from trying to pulverize him.

The elephant thrashed around with his strong
trunk and legs, trying to pulverize the monkey. But
the monkey was too agile, and the elephant missed
every time.

It was a hot day. Soon the monkey and the ele-
phant got tired. They sat down and tried to figure
out what to do next.

The monkey said, “I am agile. I will just scamper
across the river and bring back some fruit.”

He got a running start toward the river and went

You don’t broaden
the definition
of “discipline”

by rejecting
parts of it.
—Barry Boehm

scamper, scamper, scamper ... splott! The river
started to carry him away.

“That dumb monkey!” said the elephant. He
waded into the river, picked up the monkey, put him
on his back, and waded back to shore. They sat and
thought for a long time while the monkey dried out.

Finally the monkey said, “Maybe this is a solu-
tion. You can carry me across the river on your
back. When we get across, I can
climb the trees and get enough
food for us both.”

The elephant thought for a
moment and then answered, “That
sounds like it is worth a try.” So
they tried it, and it worked.

And they lived happily ever after,
until the end of their days.

Some morals to the story:

® Monkeys can do things elephants can’t do.

¢ Elephants can do things monkeys can’t do.

¢ Working on one problem at a time may not be

a good idea.
¢ Duking it out may not be a good idea.

e Finding a collaborative win-win solution may
be a good idea.
—Barry Boehm

KENT BECK’S RESPONSE TO BARRY BOEHM

The primary moral I take from Barry Boehm’s
story is that he sees the discussion of what he calls
“plan-oriented” methods in contrast to what I
might call “reality-oriented” methods as a compe-
tition. ’'m afraid I just don’t see it that way. Since
he introduced the story form, ’ll respond in kind,
although I can’t hope to compete with the charm
of two cute creatures learning to get along.

Once there was a dinosaur and a furry little
mammal, a bit like a mouse. Then an ice age
began. The dinosaur couldn’t regulate its internal
temperature, and so it died. The mouse, with its
more adaptable metabolism, survived.

The dinosaur and the mouse weren’t in compe-
tition. They ate different things, lived in different
places. Certainly, the passing of the dinosaur
opened up many opportunities for the furry little
creature to thrive, but the passing of dinosaur had
nothing to do with the mouse. If it hadn’t been a
mouse taking over, it would have been cockroaches.

The agilists are reacting to the business, technol-
ogy, and social environment as we see it. If your cli-
mate matches the conditions under which Barry
Boehm’s advice works, well, by all means, follow it.
If it’s getting chilly, though, think about what else
might work better.

June 2003

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on April 2, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

BARRY BOEHM’S RESPONSE TO KENT BECK
Kent Beck is right in saying that agility and dis-
cipline are not opposites. He is also right in saying
that XP requires a significant amount of discipline.
He has also been right in recognizing that larger
projects may need different types of discipline than
those in XP. In Extreme Programming Explained
(Addison-Wesley, 2000, p. 157), Kent says, “Size
clearly matters. You probably couldn’t run an XP
project with a hundred programmers. Nor fifty.
Nor twenty, probably. Ten is definitely doable.”
As Jim Highsmith points out in Agile Software
Development Ecosystems (Addison-Wesley, 2002,

Get The’écoo ON
ExTreme

L Ree xlthcles toget the
0 ' Lh“fi ;i_ ' rm‘ dev)lopers who have
-g.;g. pthere gone that” with XP:
' P Programmer:
=Minutes Programmer:

[
niroducing XP into Greenfield
Projects: Lessons Learned

AJsessing XP at a European
Iinternet Company

Exploring XP for Scientific
Research

Computer

p. 358), about 60 percent of the world’s software
projects have 10 or fewer people. But when project
percentages are multiplied by project sizes to deter-
mine the relative amount of work being done, these
small projects only account for about 17 percent
of the world’s software work.

What other disciplines do the people doing the
other 83 percent of the work invoke? A good exam-
ple is The ThoughtWorks lease management case
study that Amr Elssamadisy and Gregory Schalliol
describe in “Recognizing and Responding to ‘Bad
Smells’ in Extreme Programming,” (Proc. ICSE
2002, pp. 617-622). In order to get XP to work
successfully on a 50-person project, they found it
important to “... insist upon including the devel-
opment and constant updating of a more tradi-
tional picture or graphic of the overall application

..,” “create a precise list of tasks that must be
completed ... and then police it rigorously and hon-
estly,” and use a factory pattern rather than sim-
ple design for foreseeable new features.

Does this sound like “control gained by enforc-
ing obedience or order?” You bet.

I’'m not sure where Kent got the data to sub-
stantiate his statement, “Efforts to force develop-
ers and customers to work according to a
procedure developed by those not immediately
responsible for results have uniformly failed.”
Requiring US Department of Defense contractors
to achieve CMM Level 3 to compete on contracts
has been such an effort, and it has produced quite
a few success stories. For data, see the SEI Report
CMU/SEI-2001-SR-014, “The 2001 High
Maturity Workshop” (www.sei. cmu.edu/publica-
tions), and my forthcoming book with Richard
Turner, Balancing Agility and Discipline: A Guide
for the Perplexed (Addison-Wesley, 2003).

But what is most needed is not rhetorical “duk-
ing it out,” but efforts to synthesize the best from
agile and plan-driven methods to address our
future challenges of simultaneously achieving high
software dependability, agility, and scalability.

Which brings us back to the monkey and the
elephant. B

Kent Beck is the director of the Three Rivers
Institute in southern Oregon. Contact him at
kent@threeriversinstitute.org.

Barry Boebm is director of the University of South-
ern California Center for Software Engineering.
Contact him at boehm@sunset.usc.edu.

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on April 2, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

