
March/April 2009 www.stsc.hill.af.mil 23

When I first started programming, it
never occurred to me to think

about the size of the software I was
developing. This was true for several rea-
sons. First of all, when I first learned to
program, software had a tactile quality
through the deck of punched cards
required to run a program. If I wanted to
size the software, there was something I
could touch, feel, or eyeball to get a sense
of how much there was. Secondly, I had
no real reason to care how much code I
was writing; I just kept writing until I got
the desired results and then moved on to
the next challenge. Finally, as an engi-
neering student, I was expected to learn
how to program but was never taught to
appreciate the fact that developing soft-
ware was an engineering discipline. The
idea of size being a characteristic of soft-
ware was foreign to me—what did it real-
ly mean and what was the context? And
why would anyone care?

Now, 25 years later, if you Google the
phrase software size you will get more than
100,000 hits. Clearly, there is a reason to
care about software size and there are lots
of people out there worrying about it.
And still, I am left to wonder: What does
it really mean and what is the context?
And why does anyone care?

It turns out that there are several very
good reasons for wanting to measure soft-
ware size. Software size can be an impor-
tant component of a productivity compu-
tation, a cost or effort estimate, or a qual-
ity analysis. More importantly, a good soft-
ware size measure could conceivably lead
to a better understanding of the value
being delivered by a software application.
The problem is that there is no agreement
among professionals as to the right units
for measuring software size or the right
way to measure within selected units.

This article examines the various
approaches used to measure software size
as the discipline of software engineering

evolved throughout the last 25 years. It
focuses on reasons why these approaches
were attempted, the technological or
human factors that were in play, and the
degree of success achieved in the use of
each approach. Finally, it addresses some
of the reasons why the software engineer-
ing community is still searching for the
right way to measure software size.

Lines of Code
As software development moved out of
the lab and into the real world, it quickly
became obvious that the ability to mea-

sure productivity and quality would be
useful and necessary. The lines of code
(LOC) measure—including source LOC
(SLOC), thousands of LOC, and thou-
sands of SLOC—is a count of the num-
ber of machine instructions developed.
It was the first measure applied to soft-
ware, with its first documented use by
R.W. Wolverton in his attempt to formal-
ly measure software development pro-
ductivity [1].

In the ’70s, the LOC measure
seemed like a pretty good device.
Programming languages were simple
and a fairly compelling argument could
be made about the equivalence among
LOC. Besides, it was the only measure in
town.

In the late ’70s, RCA introduced the
first commercially available software
cost estimation tool, which used SLOC
converted to machine instructions as the
size measure for software items being
estimated. In the ’80s, Barry Boehm’s
COCOMO was introduced, also using
SLOC as the size measure of choice. As
other cost models followed, they too
used LOC measures to quantify the
amount of functionality being delivered.
It is important to note that while all of
these models used SLOC as a primary
cost driver, there are many other factors
that influence the cost of software
development as well. These software
cost estimation models also need to
gather information about factors such as
the complexity of the software being
estimated, the experience and capability
of the software development team,
expected reuse, the overall productivity
of the development organization, con-
straints, and so forth. The quantification
of these factors is applied to the soft-
ware size to determine estimates of cost
and effort.

I believe that SLOC will go down in
the annals of engineering history as the
most maligned measure of all time.
There are many areas where criticism of
SLOC as a software size measure is jus-
tified. SLOC counts are, by their nature,
very dependent on programming lan-
guage. You can get more functionality
with a line of Visual C++ than you can
with a line of FORTRAN, which is
more than you get with a line of
Assembly Language. This does make
using SLOC as a basis for a productivity
or quality comparison among different
programming languages a bad idea.

The Evolution of Software Size: A Search for Value©

Software size measurement continues to be a contentious issue in the software engineering community. This article reviews soft-
ware sizing methodologies employed through the years, focusing on their uses and misuses. It covers the journey the software
community has traversed in the quest for finding the right way to assign value to software solutions, highlighting the detours
and missteps along the way. Readers will gain a fresh perspective on software size, what it really means, and what they can
and cannot learn from history.

Arlene F. Minkiewicz
PRICE Systems, LLC

Software Engineering Technology

© Copyright PRICE Systems, 2009.

“Now, 25 years later,
if you Google the

phrase software size you
will get more than

100,000 hits.
Clearly, there is a

reason to care about
software size and

there are lots of people
out there worrying

about it.”

24 CROSSTALK The Journal of Defense Software Engineering March/April 2009

Software Engineering Technology

Capers Jones has gone so far as to label
such comparisons “professional mal-
practice” [2].

Concerns also surround the consis-
tency of SLOC counts, even within the
same programming language. There are
several distinct methods for counting
LOC. Counting physical LOC involves
counting each line of code written while
logical lines involve counting the lines
that represent a single complete thought
to the compiler. In many programming
languages, spaces are inconsequential;
because of this, the differences between
physical and logical lines can be signifi-
cant. Add to this the fact that even with-
in each of these methods, there are ques-
tions as to how to deal with blanks, com-
ments, and non-executable statements
(such as data declarations). Programmer
style also influences the number of LOC
written as there are multiple ways a pro-
grammer may decide to solve a problem
with the same language.

Additionally, if SLOC is the only
characteristic of a software program that
is measured, productivity and quality
studies will overlook many important
factors. Other important characteristics
include the amount of reuse, the inher-
ent difficulty of solving a particular
problem, and environmental factors that
model the approaches and practices of
an organization. All of these things
influence the productivity of a project.

In general, it is fair to say that SLOC
measurement, considered in a vacuum,
is a poor way to measure the value that
is delivered to the end user of the soft-
ware. It does continue to be a popular
measure for software cost and effort
estimation. Even as other metrics have
emerged that are considered better by
much of the software engineering com-
munity, many of the popular method-
ologies used for estimation rely on
SLOC; many go so far as to convert the
better measures into SLOC before actual-
ly performing estimates.

There are several likely factors as to
why the SLOC method continues to be
used despite its many limitations. Many
of the organizations that care about
software measurement have historical
databases based on SLOC measures. So,
although it is a valid argument that
SLOC are impossible to estimate at the
requirements phase of a project, it is not
hard to understand why so many organi-
zations find that they can do it success-
fully within their own product space.
They have calibrated their processes and
understanding around this and have met
significant success using the SLOC

method for estimation and measurement
within the context of their projects and
practices. Another important considera-
tion is the fact that once an organization
has agreed on measurement rules for
SLOC, counting can be automated so
that completed projects can be mea-
sured with minimal time and effort and
without subjectivity.

Function Points
In 1979, Allan J. Albrecht introduced
function points, which are used to quan-
tify the amount of business functionali-
ty an information system delivers to its
users [3]. Where SLOC represents some-
thing tangible that may or may not relate
directly to value, function points attempt
to measure the intangible of end user
value. Function point counts look at the

five basic things that are required for a
user to get value out of software: Input,
Outputs, Enquiries, Internal Data
Stores, and External Data Stores. A
function point count looks at the num-
ber and complexity of each of these
components in order to determine the
amount of end user functionality deliv-
ered. Function points create a context
for software measurement based on the
software’s business value.

Function points also offer a way to
measure productivity that is indepen-
dent of technology and environmental
factors. It doesn’t matter what program-
ming language is being used or how
mature the technology is, it doesn’t mat-
ter how verbose or terse the program-
mers are, it doesn’t matter what hard-
ware platform is used—100 function
points is 100 function points. This pro-
vides businesses a way of looking at var-
ious software development projects and

assessing the productivity of their
processes.

While I would be remiss not to
acknowledge the great contribution that
Albrecht made to the software engineer-
ing community with the introduction of
function points, I would be equally
remiss to stop the story here. Function
points are not the answer to all software
measurement woes, as they come with
their own set of limitations.

Albrecht developed function points
to address a specific problem within his
organization, IBM. They, like many busi-
nesses that developed software, were
concerned with the problem of runaway
software projects and wanted to get a
better handle on their software develop-
ment processes. According to Tom
DeMarco, “you can’t manage what you
can’t measure” [4]. Function points
related very closely to the types of busi-
ness applications that IBM was develop-
ing at the time, proving to be a far supe-
rior measure of business value than
SLOC; function points can be much bet-
ter for an organization that develops
these types of systems to use for pro-
ductivity comparison studies.

It’s fair to say that function points
caught on like wildfire in the software
engineering community. Many new and
successful businesses grew around help-
ing software development organizations
use function points to improve their mea-
surement and quality programs, especial-
ly for commercial IT software develop-
ments. Two problems grew out of the
introduction of function points. The first
was that the fervor to jettison the much-
maligned SLOC measures caused many
to embrace function points for all types
of systems, many not well-suited to func-
tion points. The second was that many
tried to use function points as a panacea
for all measurement problems.

Function points work best for data-
intensive systems where data flows,
input screens, output reports, and data-
base inquiries dominate. As the industry
tried to use function points to measure
the business value of real-time systems,
command and control systems, or other
systems with several internal logical
functions, they consistently under-repre-
sented the value that these systems
delivered. It turns out that information
about inputs, outputs, and data stores is
not adequate for determining the value
of software that has a lot going on
behind the scenes. In 1986, Software
Productivity Research developed feature
points to try to address this shortcoming
with function points. The feature point

“Where SLOC
represents something

tangible that
may or may not

relate directly to value,
function points attempt

to measure the
intangible of

end user value.”

March/April 2009 www.stsc.hill.af.mil 25

definition added algorithms to the enti-
ties that are counted and weighted. Mark
II function points were introduced by
Charles Symons and Boeing introduced
three-dimensional function points. The
Common Software Measurement Inter-
national Consortium’s (COSMIC) full
function points were unveiled in the late
’90s and became ISO-certified in 2003.
COSMIC function points provide multi-
ple measurement views, one from the
perspective of the user and one from the
perspective of the developer. All of
these alternate methods were intended
to address one or more of the weak-
nesses or limitations of Albrecht’s func-
tion points—now commonly referred to
as International Function Point Users
Group (or IFPUG) function points. The
industry loved the idea of having a point
system to define value, but, as with
SLOC, the industry could not agree on
the best way to measure points.

Despite the limitations and obstacles,
the industry finally had a better way to
measure productivity for software devel-
opment projects. And, if you can use it
to measure productivity, it certainly can
be used to estimate new projects as well.
If your organization knows how many
days it takes to build a function point,
planning projects into the future should
be a breeze. But a crazy thing happened
when organizations started using func-
tion points to estimate projects: They
discovered that things other than busi-
ness value drove project costs. While
function points were good for measur-
ing organizational productivity, they
weren’t really fitting the bill for estimat-
ing cost and effort. The value adjust-
ment factor (VAF) was added to the def-
inition of a function point in a rather
weak attempt to address this limitation.
VAF takes into account general systems
characteristics such as the amount of
online processing, performance require-
ments, installation ease, and reusability.
It then uses those characteristics to
adjust a function point count based sole-
ly on functional user requirements. With
the VAF, the function point community
managed to stray from business value
while adding very limited additional abil-
ity to accurately predict development
costs. Estimating costs using value-
adjusted function points became its own
form of professional malpractice.

Function points, in their many varia-
tions, offer the software engineering
community a better window into busi-
ness value, although the existence of
many definitions does not lead to the
cross-cultural comparisons of the pro-

ductivity desired. They still present a
good tool for organizations that develop
comparable software products to use for
both benchmarking and determining
best practices. There are, of course,
additional limitations with function
points. Although well-documented rules
exist for counting function points, there
is still subjectivity in the interpretation
of these rules. Furthermore, the process
of counting function points has yet to
be effectively automated; the manual
process is time-consuming and requires
professional certification.

Other Size Measurements
Other sizing measures have been intro-
duced over the years as well. In the ’80s,
as object-oriented (OO) design and
development gained popularity, there

was a flurry of activity to develop soft-
ware measurements related specifically
to artifacts that came from OO designs.
These measures made it possible to per-
form productivity studies across similar
projects. Little was done, however, to
relate these artifacts to the value that the
software delivers, making these studies
less applicable outside of a specific
application domain. Additionally,
because a design was required in order
to assess these artifacts, the measures
were not particularly suited to estima-
tion. OO metrics never really caught on
in a widespread fashion, although there
are pockets within the community that
have found OO measures they are happy
with and can use effectively.

There is a measure which grew out
of object orientation that shows some
promise in the representation of busi-
ness value. Use case points were intro-
duced in 1993 by Gustav Karner (see

[5]), with use cases being introduced by
Ivar Jacobson in the mid-80s [6]. Use
cases provide a language for describing
the requirements of a software system in
a way that facilitates communication
between developers and the eventual
users of the system. Each use case
describes a typical interaction that may
occur between a user (human operator
or other software system) and the soft-
ware. The focus is on the functions that
a user may want to perform or have per-
formed, rather than on how the software
will actually perform those functions.
Use case points count and classify the
actors in the use case and the transac-
tions that are required to make the use
case happen. Use case points describe
the functionality being delivered rather
than the way this functionality is imple-
mented; in other words, they describe
business value. As with function points,
there are still technical and implementa-
tion details that must be addressed on
top of business value when used for
estimation. Unlike function points, the
use case points can cover a wider spec-
trum of application types. The problem
with utilizing use cases is their lack of
standardization across the industry and
even across organizations. An organiza-
tion that has a well-defined process for
defining use cases could successfully use
them for productivity tracking and effort
estimation.

Agile software development prac-
tices are adding additional options for
measurement of the output and produc-
tivity of software projects. Agile devel-
opment offers a relatively new paradigm
for the successful production of soft-
ware solutions. The tenets of Agile
include very short, well-contained itera-
tions of software development that can
be carefully measured with respect to
the output of business value. Measures
of story points, acceptance tests passed,
and unit tests created and/or passed
replace more traditional measures with
values that speak more directly to the
business value added in each iteration.
Story point measures focus on function-
ality that provides end-to-end business
value. They are defined within the soft-
ware development group and are used
by the group to estimate effort and to
measure the productivity of successive
iterations. Over time, with discipline,
these groups become proficient at
assigning story points to the software
features they are asked to develop. Test
cases developed and/or passed measure
the quality dimension of business value.
Agile measures such as story points and

“But a crazy thing
happened when

organizations started
using function points to

estimate projects:
They discovered that

things other than
business value drove

project costs.”

The Evolution of Software Size: A Search for Value

26 CROSSTALK The Journal of Defense Software Engineering March/April 2009

Software Engineering Technology

tests passed, while having little value
outside of a specific software develop-
ment group for benchmarking or com-
parison studies, offer a great deal of
external value for communicating pro-
ductivity and quality and provide an
excellent tool for negotiating features
with management.

Future of Software Sizing
The software industry has struggled dur-
ing the last 25 years to find the right way
to assess the productivity and quality of
software development projects. The
entire industry continues searching for
solutions because high-quality assess-
ment methods are necessary for proper
project planning and execution. It is
important to understand organizational-
ly how productive our software develop-
ment ventures are. Organizations hop-
ing to improve software processes also
measure in order to benchmark their
organization against others considered
best in breed. The formula for productivi-
ty is output divided by effort. Our strug-
gle has centered on finding the right
units to describe output.

Clearly, LOC are a very tangible out-
put of the software development
process. Just as clearly, they are unsuit-
able to measure productivity except in
very tightly constrained environments
because there is no clear relationship
between a SLOC count and the amount
and complexity of features delivered to
the end user. Function points, feature
points, and all the other derivations of
this concept are not real and thus cannot
be considered output of the software
development process. They do, however,
supply, in many cases, a quantification of
features being delivered to the user. As
such, they have promise, within a
defined scope, as a measure for produc-
tivity across organizations. On their
own, they are not sufficient to estimate
future software development efforts
because they don’t measure non-func-
tional requirements that sometimes have
significant impacts on the amount of
effort required in software development.
Additional units of measure have been
introduced and have gained some suc-
cess within pockets of the community,
but nothing has managed to achieve
widespread popularity.

The software community continues
to struggle with measurement issues
because they continue to seek the silver
bullet solution. Every measurement exer-
cise needs to be conducted within a cer-
tain context and the temptation to apply

one unit of measurement to answer all
problems should be avoided. In a per-
fect world, it would be possible to estab-
lish a one-to-one correspondence
between the effort associated with a
software development project and the
business value delivered by that project;
in the real world, however, there are
other factors that come into play. What
seems clear is that with discipline, rigor,
and well-defined practices, organizations
can be successful using any unit for soft-
ware size for internal project planning
and productivity studies.

So far, we have failed to identify a
universally applicable measure for size.
The scope of a software project has
multiple dimensions. The amount of
user functionality is an important
dimension but, if viewed alone, it has
limited value outside of a very narrow
context. External benchmarking and
productivity studies need to be per-
formed within stratified categorizations
of feature complexity and non-function-
al requirements.

While there is still no answer to the
question of what’s the best way to mea-
sure the output of a software develop-
ment project, technology appears to be
leading us in a positive direction. You
can’t open your inbox without finding a
few spam e-mails talking about service-
oriented architecture (SOA), cloud com-
puting, or some other configuration that
separates the implementation of busi-
ness rules from the implementation of
the logistics necessary to deliver these
business rules—or, in other words, con-
figurations that separate IT-type func-
tionality from business-type functionali-
ty. While still not a silver bullet, organi-
zations that are truly able to achieve ser-
vice orientation put themselves in a
position to both measure the business
value of software projects and predict
the cost of delivery of future business
value using the same units of measure-
ment. This unit of measure, however,
may still require definition; if a way can
be found to quantify services, that may
lead to a better solution to the software
measurement quandary. As SOA and
related technologies become more wide-
spread (if they do actually become more
widespread), this is definitely an area for
further research.

The software engineering communi-
ty should be commended for efforts in
size measurements. There have been sig-
nificant strides during the last quarter
century in an effort to evolve measure-
ment practices. There is a continued
pursuit of a better measure to describe

the output and productivity of software
development projects. Simultaneously,
the software engineering community is
attempting to bridge the gap between IT
and the business by working towards a
business value-based language to
describe our software.u

References
1. Wolverton, R.W. “The Cost of

Developing Large-Scale Software.”
IEEE Transactions on Computers
Vol. C-23, No. 6: 615-636, June 1974.

2. Jones, Capers. “Measuring Defect
Potentials and Defect Removal Effi-
ciency.” CrossTalk June 2008.

3. Albrecht, Allan J. Measuring Appli-
cation Development Productivity.
Proc. of the Joint SHARE, GUIDE,
and IBM Application Development
Symposium. 14-17 Oct., Monterey,
CA. IBM Corporation, 1979.

4. DeMarco, Tom. Controlling Software
Projects: Management, Measurement
and Estimates. Upper Saddle River,
NJ: Prentice Hall PTR, 1986.

5. Banerjee, Guntam. “Use Case Points –
An Estimation Approach.” Aug. 2001
<www.comp.nus.edu.sg/~bimlesh/
oometrics/15/1035194512861.pdf>.

6. Cockburn, Alistair. “Use Cases, Ten
Years Later.” Software Testing and
Quality Engineering Magazine Mar./
Apr. 2002.

About the Author

Arlene F. Minkiewicz is
the chief scientist at
PRICE Systems, LLC. In
this role, she leads the
cost research activity for
the entire suite of cost

estimating products that PRICE pro-
vides. Minkiewicz has more than 24 years
of experience with PRICE building cost
models. Her recent accomplishments
include the development of new cost
estimating models for IT projects.
Minkiewicz has published many articles
on software measurement and estimation
and frequently presents her research at
industry forums.

PRICE Systems, LLC
17000 Commerce PKWY
STE A
Mt. Laurel, NJ 08054
Phone: (856) 608-7222
E-mail: arlene.minkiewicz@

pricesystems.com

