
A Survey of Plan-Driven Development Methodologies

Plan-driven methodologies have been utilized by organizations for many years. In this
chapter, we provide an overview of three prominent, modern plan-driven methodologies:

• the Personal Software Process
• the Team Software Process
• the Rational Unified Process

Software methodologists incorporate the general characteristics of a software
development model (a software development model is a simplified, abstracted description
of a software development process) into specific software development processes that
adhere to the spirit of these models. A software development process is the process by
which user needs are translated into a software product. The process involves
translating user needs into software requirements, transforming the software
requirements into design, implementing the design in code, testing the code, and
sometimes installing and checking out the software for operational use. Note: these
activities might overlap or be performed iteratively. (IEEE, 1990) While software
development models have general characteristics, such as “having strong documentation
and traceability mandates across requirements, design and code” (Boehm and Turner,
2003), software development processes have specific practices (a software development
practice is a disciplined, uniform approach to the software development process (IEEE,
1990)) that need to be followed, such as code inspection. You can think of the
relationship between software models and software processes as an abstract superclass–
subclass relationship. The model specifies generally the common techniques and
philosophies, while the methodology “overrides” and specializes these general
specifications with details of specific practices.

In this chapter, we will describe the practices of the most prominent methodologies that
have plan-driven characteristics1: the Personal Software Process (PSP) (Humphrey, 1995),
the Team Software Process (TSP) (Humphrey, 2000), and the Rational Unified Process®
(RUP®).(Kruchten, 2004) The class diagram in Figure 1 shows these methodologies in the
spirit of the superclass–subclass relationship. For each of these methodologies, we will
present an overview, the main roles involved in the methodology, the documents and
artifacts produced, the development process, and a final discussion.

1 Personal Software Process, PSP, Team Software Process, and TSP are all service marks of Carnegie
Mellon University. Rational Unified Process and RUP are registered trademarks of IBM, Corp.

© Laurie Williams 2004 Page 2 of 26

Plan-Driven Development

PSP TSP RUP

Figure 1: Plan-Driven Methodologies

Before beginning, it is important to understand that there is not a sharp dichotomy
between plan-driven and agile software development methodologies. So, these three
methodologies have some elements of agility to them or can be slightly modified to
incorporate agility. The PSP is probably the most plan-driven. The TSP could be used to
structure team development of agile teams. Finally, versions of the RUP have been
created that could distinctly be classified as agile; this will become more clear when we
discuss RUP in Section 3. Let us review some common characteristics of plan-driven
methodologies, though these guidelines are more relaxed in smaller projects (Boehm and
Turner, 2003):

• Focus on repeatability and predictability
• Defined, standardized, and incrementally improving processes
• Thorough documentation
• A defined software system architecture defined up-front
• Detailed plans, workflow, roles, responsibilities, and work product descriptions
• Process group containing resources for specialists: process monitoring, controlling,

and educating
• On-going risk management
• Focus on verification and validation

1 Personal Software ProcessSM (PSPSM)
The PSP (Humphrey, 1995; Humphrey, 1997) is a process to be followed by an
individual programmer, not a team of programmers—hence, the name Personal Software
Process. While many software processes are followed by a whole team, an individual
programmer can practice the PSP even if his teammates are not using those practices. It
certainly helps when others are using the practices as well, though.

1.1 Overview
The PSP is a structured framework of forms, guidelines, and procedures developed by
Watts Humphrey of the Software Engineering Institute.2 The framework guides an

2 The Software Engineering Institute (http://www.sei.cmu.edu/) is a federally funded research and
development center sponsored by the U.S. Department of Defense. The SEI's core purpose is to help others
make measured improvements in their software engineering capabilities.

© Laurie Williams 2004 Page 3 of 26

engineer in using a defined, measured, planned, and quality controlled process. However,
another purpose of the framework is to help engineers understand their own skills so they
can modify the process to meet their personal needs and preferences and to improve their
own personal performance.

PSP training follows an evolutionary improvement approach. An engineer learning to
integrate the PSP into his or her process begins at Level 0 and progresses in process
maturity to Level 3 (See Figure 2). Each level incorporates new skills and techniques into
the engineer’s process—skills and techniques that have been proven to improve the
quality of the software process. Each level has detailed scripts, checklists, and templates
to guide the engineer through required steps. The scripts, checklists, and templates are
only a starting point, however. The PSP provides measurement-based feedback that helps
each engineer improve her own personal software process. Thus, Humphrey encourages
the customization of these scripts and templates as the engineer receives this feedback
and gains an understanding of his or her own strengths and weaknesses.

Figure 2: The levels of the personal software process.

PSP has several strong tenets. The first is that the longer a software defect remains in a
product, the more costly it is to detect and remove it. Therefore, thorough design and
code reviews are performed for efficient defect removal. The second philosophy is that
defect prevention is more efficient than defect removal. Careful designs are developed
and data is collected to give additional input on where the programmer should adjust their
own personal software process to prevent future defects.

PSP0
Gather data on current

PSP1
Estimate using historical data

PSP2
Manage product quality

PSP3
Apply PSP2 iteratively

© Laurie Williams 2004 Page 4 of 26

1.2 Documents and Artifacts
The artifacts in the PSP are the scripts, forms, templates, standards, and checklists. Each
of these is discussed in this section.

Script. The scripts provide an orderly structure of steps the engineer should go through
to complete the process step and refer the engineer to the relevant standards, forms,
templates, guidelines, and measures. The PSP has six different kinds of scripts. In many
cases, there is a different version of the script for every relevant level (PSP0, PSP0.1,
PSP1, PSP1.1, PSP2, PSP2.1, and PSP3).

• Process script—lays out the inputs and the steps to complete a process. By
following the script, the engineer can ensure she has all the required inputs and
understands the requirements of the job. The completeness of the process is
checked via stated exit criteria. A sample process script is shown in Figure 3.

• Planning script—provides instructions for planning development activities, such
as making size and time estimates.

• High-level design script—provides instructions for creating a high-level design
(for PSP3 only).

• High-level design review script—provides instruction for reviewing the PSP3
high level design.

• Development script—outlines the steps for design, code, compile, and test.
• Postmortem script—provides the instructions for analyzing and summarizing the

data collected in the forms and templates.

© Laurie Williams 2004 Page 5 of 26

Figure 3: A sample process script.

Forms. Forms are used to guide thorough, complete data collection. Forms are used
when the amount of data you collect is fixed. Three fundamental forms are used in the
PSP:

• Defect recording—An important activity of the PSP is collecting data about the
defects that are injected and removed from the project. A form such as the one
shown in Figure 4 is used to collect that data; this form is used by students
learning the PSP. Each defect is assigned a unique defect number and is classified
according to the type of defect using a defect classification scheme developed by
IBM Research. (The defect classification scheme is the Orthogonal Defect
Classification scheme or ODC (Chillarege, Bhandari et al., November 1992).) The
engineer records the development phase in which she believes the defect was
injected, the phase in which the defect was found/removed, and how long it took to

© Laurie Williams 2004 Page 6 of 26

fix the defect. Finally, if it is believed this defect was injected while fixing another
defect, the number of that initial defect is recorded.

Figure 4: PSP defect recording log.

• Time recording log—another important PSP activity is recording how much time
is spent on development activities. This data is recorded in a form like the one
shown in Figure 5 which was also designed for students learning PSP. When a
developer starts to work, he records the date, the start time, and the development
phase. If the developer is interrupted during work, the number of elapsed minutes
of the interruption is recorded. When activity is completed, the stop time and any
comments are noted.

© Laurie Williams 2004 Page 7 of 26

Figure 5: PSP time recording log.

• Project plan—a summary form that is used for the summarization, analysis, and

utilization of the data that has been entered, as shown in Figure 30.5. Often, the
time and data logging and the completion of the project plan form can be
automated via available PSP tools.3

3 See http://www.ipd.uka.de/PSP/ for helpful PSP information and links to available PSP tools.

© Laurie Williams 2004 Page 8 of 26

Figure 6: Project plan template.

Templates. Templates are important tools for being complete in development activities.
The PSP has defined templates for test reporting, size estimating, task planning, schedule
planning, issue tracking log, and for creating operational scenarios and functional, state,
and logic specifications.

Checklists. Checklists help you to completely follow a procedure. PSP suggests an initial
version of design and a code review checklist. The intent is that the developer learn about
the kinds of defects he typically injects and continually adapts these checklists to surface
those “typical” defects. Here are some examples of code review checklist items for a
program written in C:
o Verify that the code covers all the design

© Laurie Williams 2004 Page 9 of 26

o Verify that includes are complete
o Verify the proper use of ==, =, ||, and so on.

1.3 Roles
PSP has only one role, the individual software engineer.

1.4 Process
PSP training is based on four levels of personal process: PSP Levels 0 through 3, as
shown in Figure 2. Skills at one level are mastered before the engineer moves to the next
level of personal process improvement.

Level 0 (Personal Measurement): The input to PSP is the requirements; requirements
elicitation is assumed to have been completed and a requirements document delivered to
the engineer. The PSP0 has three waterfall-like phases: planning, development (including
design, code, compile, and test), and a postmortem. In the postmortem, the engineer
ensures all data for the projects has been properly recorded and analyzed.

The software engineer begins by establishing a personal baseline of her current
development process by basic measurements, such as the time spent on a program (using
the form shown in Figure 5), the defects injected and removed in each development phase
(using the form shown in Figure 4), and the size of the program (in lines of code), and
creating some initial reports. This level is then improved by adding a coding standard, a
size measurement, and the development of a personal process improvement plan (PIP). In
the PIP, the engineer records ideas for improving her own process. The improvements
constitute PSP0.1.

Level 1 (Personal Planning): Based upon the baseline data collected in PSP Level 0, the
engineer estimates how large a new program will be and prepares a test report (PSP1).
Accumulated data from previous projects is used to estimate the total time. Each new
project will record the actual time spent. This information is used for task and schedule
planning and estimation (PSP1.1).

Level 2 (Personal Quality): Defect prevention and removal are the focus at the PSP
Level 2. Engineers construct and use checklists for design and code reviews (PSP2).
PSP2.1 introduces design specification and analysis techniques. Engineers learn to
evaluate and improve their process by measuring how long tasks take and the number of
defects they inject and remove in each phase of development.

Level 3 (Scaling Up): In the final level, the programmer employs an incremental model
of development for larger projects by dividing the problem into smaller sections, and then
iteratively applies the PSP principles as each section is implemented.

1.5 Discussion
The main advantages of PSP have been demonstrated by several studies, including
(Hayes and Over, 1997; Humphrey, May 1996; Ferguson, Humphrey et al., May 1997):

• Improved size estimation and time estimation

© Laurie Williams 2004 Page 10 of 26

• Improved productivity
• Reduced testing time
• Improved quality

The possible drawbacks of PSP are as follows:

• Some people are not receptive to the detailed data recording.
• The longevity of the PSP requires discipline. Several studies, including (Webb,

1999), have noted that engineers stop using the PSP over time unless they work
on TSP teams (discussed in the next section) that are competently coached and
managed.

2 Team Software ProcessSM (TSPSM)
The PSP, discussed in Section 1, is used to help an individual software engineer. Rarely,
though, do engineers work alone. Most often, software engineers work as part of a team.
The TSP (Humphrey, 2000; Hilburn and Humphrey, September/October 2002) provides a
structure for self-directed teams to plan and track their work, to establish goals, and to
create and own their processes and plans. It also provides guidance to individual software
engineers on how to perform as an effective team member. To make a distinction, there is
an industrial TSP for professional teams of up to 150 engineers who work on large,
possibly multi-year projects. The material in this chapter comes from the Introductory
Team Software Process (TSPi), a defined framework specifically developed for graduate
or upper level undergraduate students. The process described here is the academic TSPi
version of the TSP. The industrial strength TSP follows the same general principles
described here, but it has many important differences. An overview description of
industrial TSP principles can be found in Winning with Software: An Executive Summary.
(Humphrey, 2002)

2.1 Overview
Watts Humphrey, the author of the PSP, also created the TSP and the TSPi. The TSP
supports the development of industrial strength software through the use of team building,
planning, and control. The overall structure of the TSPi is shown in Figure 7. The project
starts with a product needed by a customer. A software development project to address
this need is divided into overlapping, iterative development cycles. The team produces
part of the product each cycle until the need is fulfilled with a finished product. Each of
the cycles is a “mini waterfall” consisting of a cycle launch, strategy, planning,
requirements, design, implementation, test, and postmortem. To some extent, the TSPi
relies upon all the individual engineers using the PSP. However, TSPi is flexible enough
that you could apply many of the principles and techniques if the individual engineers are
not using PSP.

© Laurie Williams 2004 Page 11 of 26

Figure 7: The TSPi process structure (taken from (Hilburn and Humphrey,

September/October 2002)).

2.2 Documents and Artifacts
The structure of the TSPi is similar to that of the PSP; TSPi is also a structured
framework of scripts, forms, and standards. Specifically, there are 21 process scripts and
10 role scripts (role scripts are discussed in the next section), 21 forms, and 3 standards.
As stated above, TSP works best when the individual engineers on the team are using the
PSP for their own personal development. As such, the scripts, forms, and standards of
the PSP of the PSP guide the work and process improvement of each engineer on the
team. The scripts, forms, and standards of the TSP guide the structure, organization, and
measurement of the team as a whole.

© Laurie Williams 2004 Page 12 of 26

Scripts. The scripts lay out detailed steps to guide the teams through launching and
running their projects so that each engineer can see how to do what she needs to do. A
sample of a partial TSPi process script is shown in Figure 8. This is a script for updating
requirements in the cycles after the first cycle. Each script shows the entry criteria, some
general information, detail process steps, and finally exit criteria. There are scripts for
design, development, implementation, team launch, development plan, postmortem,
requirements development, configuration management, development strategy, integration
and system test, unit test, and the weekly meeting.

© Laurie Williams 2004 Page 13 of 26

Figure 8: TSPi process script (requirements).

© Laurie Williams 2004 Page 14 of 26

Forms. As with the PSP, the TSPi provides forms to guide in thorough, complete data
collection. Some of the forms, such as the Defect Recording Log and the Time Recording
Log, are identical to the PSP. Many of the forms, however, are for higher level data
collection and analysis where the plans and data from the whole team are summarized.
An example of a form is shown in Figure 9. This form is for student evaluation of their
team member peers. When students work in a team, some team members might
contribute less than their fair share of the work while others go above and beyond what is
expected (sometimes to make up for the students who are not doing their share). The
form shown in Figure 9 is used to provide feedback to the instructor on the contributions
of team members. Other forms included in the TSPi collect necessary team information,
such as configuration change and status, inspections, issues, and testing. Still others
provide the format for team summary information, such as planning, weekly status, and
task planning.

© Laurie Williams 2004 Page 15 of 26

Figure 9: TSPi peer evaluation form.

Standards. The TSPi includes standards for defects types, the project notebook, and
quality criteria. The defect type standards provide the defect classification that is used on
the defect recording log, as discussed in Section 1.2 and appear in the upper left corner of
Figure 4. The project notebook standard provides useful guidance on what should be
included in a project notebook. Official project information, such as copies of work
products, weekly team status reports and test plans, is archived in the team’s project

© Laurie Williams 2004 Page 16 of 26

notebook, which is maintained by the team leader. Finally, the quality criteria provide
helpful standards that can be used to establish team quality goals. Some examples of
these standards are having fewer than 10 unit test defects/KLOC or inspecting fewer than
two pages of requirements/hour.

2.3 Roles

A very important factor for effective team building is defining clear team roles for each
team member. Then, each engineer has clearly identified responsibilities and understands
what she is expected to do in terms of planning, tracking, quality, support, and leadership
tasks. The TSPi defines five team roles and provides a very thorough guide for each role.
When possible, the assignment of the person to the role should be based upon the
person’s interest in that role. In addition to the responsibilities outlined in these roles,
each software engineer on the team would have technical responsibilities for product
development. Via these roles, each engineer shares in the essential “overhead” of product
development in addition to making a technical contribution to the working product.

In the TSPi, each role has its own chapter, complete with the role’s goals, helpful skills
and abilities, principle activities, and project activities. The main responsibilities and
goals of each of these is briefly described here (Hilburn and Humphrey,
September/October 2002):

• Team leader: leads the team and ensures that engineers report their progress data
and complete their work as planned.

o Goal 1: Build and maintain an effective team.
o Goal 2: Motivate all team members to work aggressively on the project.
o Goal 3: Resolve all the issues team members bring to you.
o Goal 4: Keep the instructor fully informed about the team’s progress.
o Goad 5: Perform effectively as the team’s meeting facilitator.

• Development manager: leads and guides the team in product design, development,
and testing.

o Goal 1: Produce a superior product (documented and meeting all
functional and operational objectives and quality criteria).

o Goal 2: Fully utilize the team members’ skills and abilities.
• Planning manager: supports and guides the team in planning and tracking its

work.
o Goal 1: Produce a complete, precise, and accurate plan for the team and

for every team member.
o Goal 2: Accurately report team status every week.

• Quality/process manager: supports the team in defining the process needs and
establishing and managing the quality plan.

o Goal 1: Ensure that all team members accurately report and properly use
TSPi process data.

o Goal 2: Make certain that the team faithfully follows the TSPi quality plan
and produces a quality product.

o Goal 3: Make all team inspections properly moderated and reported.

© Laurie Williams 2004 Page 17 of 26

o Goal 4: Make sure that all team meetings are accurately reported, and the
reports put in the project notebook.

• Support manager: supports the team in determining, obtaining, and managing the
tools needed to meet its technology and administrative support needs.

o Goal 1: Provide the team with suitable tools and methods to support its
work.

o Goal 2: Prevent unauthorized changes to baseline products.
o Goal 3: Keep the risk-tracking system functional to keep the team’s risks

and issues recorded and reported each week.
o Goal 4: Ensure that the team meets its reuse goals for the development

cycle.

An important TSP role that is not in the TSPi (and is not in the preceding list) is the team
coach. In the industrial form of the TSP, the team coach role is assumed by someone who
is trained and qualified by the SEI and generally launches and coaches multiple projects.
The team coach is not involved in the technical details of the project itself, as is even the
team leader. In the industrial form of TSP, this role is assumed by the manager the team
reports to or by some other person who is very knowledgeable on software process and
might coach multiple projects. In academia, the teaching staff assumes this role. The job
of this person is to motivate the team and to maintain a relentless focus on quality and
excellence. This requires daily interaction with the team and an unceasing requirement
that the process be followed, the data be gathered, and the results be analyzed. The team
coach and the team meet regularly to review their performance and to ensure that the
work meets the standards.

2.4 Process
Figure 7 lays out the process structure of the TSPi. TSPi uses multiple development
cycles. Each cycle starts with a launch followed by seven iterative process steps:
development strategy, development plan, requirements, design, implementation, test, and
postmortem. The cycles can and should overlap. Each cycle should produce a testable
version that is a subset of the final product.

The launch and the seven process steps are now briefly described. The TSP has a detailed
script for the tasks of the launch and each of the seven process steps.

Launch. The customer (or instructor) describes the overall product objectives. Teams are
formed and team structure is established (the engineers assume the roles as just
described). The team establishes a meeting schedule and reporting structure. The team
sets measurable goals and measurements. An example of a team goal and measurements
is as follows (Hilburn and Humphrey, September/October 2002):
Team Goal: Produce a quality product

• Measure 1: More than 80 percent of the defects will be found before the first
compile.

• Measure 2: No defects will be found during system test.
• Measure 3: At project completion, all product requirements will be correctly

implemented.

© Laurie Williams 2004 Page 18 of 26

Strategy. The development strategy specifies the order in which product functions are
defined, designed, implemented, and tested. A high level conceptual design of the
product is developed. Preliminary, high level size and time estimates are developed.
Risks are assessed. Finally, a strategy is established for how the product will be enhanced
in each cycle.

Plan. The team develops a comprehensive plan that includes the following:

• A list of the products to be produced with their estimated sizes;
• A list of tasks to be completed, each assigned a responsible team member and each

complete with an estimation of how long it will take to complete the task,
balancing team workload;

• A week-by-week schedule of tasks and available work hours;
• A quality plan that estimates the quantity of defects injected and removed by

development phase; and
• A template summarizing the product’s estimated and actual size, effort, and defect

data.
These plans are often documented and updated via a TSPi spreadsheet tool.

Requirements. The team produces a clear and unambiguous description of what the
product is to be. This is documented in Software Requirements Specifications (SRS) such
as those described in Chapter 5 Requirements Engineering and Elicitation. Each cycle the
SRS is re-examined and evolved.

Design. The principle objective of the design process step is to produce a precise,
complete, high quality specification of how the product is to be built.

Implementation. The code is implemented utilizing standards, such as coding standards
(which ensures the team’s code looks the same person-to-person) or a defect
classification standard, as previously discussed. All code is unit tested and is reviewed
via formal inspections during the implementation phase.

Test. The product is integrated and tested. The purpose of this testing is to assess the
product, not to fix it. If the assessment determines the product is not of high quality,
testing should cease and the product should repeat any necessary
requirements/design/implementation steps. Integration testing is done to verify that the
product is properly built, all the parts are present, and that they function together. System
testing is done to validate that the product does what the system requirements call for.

Postmortem. Similar to the postmortem in the PSP, the teamwork is reviewed to make
sure all the tasks are complete and all the required data are recorded. The team also
carefully reviews how the cycle went—to learn what went right and wrong and to
brainstorm how they can do a better job in the next cycle or on the next project.

© Laurie Williams 2004 Page 19 of 26

2.5 Discussion
In general, the advantages and disadvantages of the TSPi are similar to those of the PSP.
It should be noted, however that the principal benefit of both the TSP and the academic
TSPi is that it shows teams of students or engineers how to produce quality products for
planned costs and on aggressive schedules. They do this by showing teams how to
manage their work and by making them owners of their plans and processes. (Humphrey,
1998)

3 Rational Unified Process (RUP)
The RUP (Kroll and Kruchten, 2003; Kruchten, 2004) is very different from the
prescribed PSP and TSP from two perspectives. First, the RUP specifically embeds
object-oriented techniques and uses UML as its principle notation. Secondly, the RUP is
a customizable process framework. Depending upon the project characteristics, such as
team size, project size, and so on, the RUP can be tailored or extended to match the needs
of an adopting organization.

3.1 Overview
The RUP combines the expertise from many sources and three decades of development
and active use. Development started in Sweden by Dr. Ivar Jacobson (Jacobson,
Christerson et al., 1992) in the late 1980s. Jacobson was first at Ericsson, and then he
started his own company, Objectory AB. Jacobson’s process was called Objectory, which
is an abbreviation of “Object Factory.” Objectory AB was acquired by Rational, Inc. in
the fall of 1995. Objectory was integrated with Rational’s process (into the Rational
Objectory Process or ROP) and became an iterative process, focused on software
architecture spanning the whole development lifecycle; ROP 4.0 was launched in the fall
of 1996. Finally, the Rational Unified Process was released in 1998 (Kruchten, 2004) as a
unification of development approaches and the work of many methodologists. The RUP
integrated a wide range of seemingly independent tools developed by Rational. In 2003,
Rational—with RUP and its associate tools—was acquired by IBM. Similar to the
TSP/TSPi, there is both a professional and a student version of RUP. (Robillard and
Kruchten, 2003; Kruchten, 2004) The student version is called the Unified Process for
Education, abbreviated UPEDU and pronounced yoopeedoo. Only the most important
features of the RUP process are retained to enable students to focus on the essential
components of learning to use the disciplined process.

The idea behind the creation of the RUP was to capture many of the best practices in
modern software development and to put them into a form from which they could easily
be composed into a suitable process for a wide range of projects and organizations. The
overall process structure of RUP is shown in Figure 10. The horizontal axis represents the
timeline of a project lifecycle as it unfolds. The core process disciplines that logically
group software engineering activities that are often performed simultaneously are shown
on the vertical axis. The height of the area indicates how much work is spent on a
discipline at a given point in time. The figure indicates that the disciplines need work
simultaneously throughout various phases of development and that the software product
is designed and built in a succession of incremental iterations.

© Laurie Williams 2004 Page 20 of 26

Figure 10: RUP process structure (from (Kruchten, 2004)).

Before describing the RUP, some basic definitions are needed so that you can understand
the underlying structure. A role defines the responsibilities of team members who carry
out their activities in their software process. The role of a team member evolves over time
and is driven by the activities that are being performed at any given time. An activity is a
piece of work (or “operation”) that can be executed by one role. The granularity of an
activity is usually a few hours to a few person-days. An activity is assigned to a particular
role and must have a clear purpose, which is usually expressed in terms of creating or
updating artifacts. An artifact is any piece of information or physical entity produced,
modified, or used by the activities of the software engineering process. Artifacts are used
as input to workers to perform an activity and are also the results of such activities.

RUP considers the software process as a collaboration among roles that perform activities
on concrete, tangible artifacts. This association is shown as a class diagram in Figure 11.

Figure 11: Association between roles, artifacts, and activities (from (Robillard and Kruchten, 2003)).

 Role

Activity
0..*

1

0..*

1

Performs

Artifact
0..*1 0..*1 IsResponsibleFor

0..*

0..*

0..*

input
0..*

Uses

0..*

0..*

0..*

output
0..*

Produces

© Laurie Williams 2004 Page 21 of 26

3.2 Documents and Artifacts
RUP is not just a defined, static process document. While there are published books on
RUP (Jacobson, Booch et al., 1999; Kroll and Kruchten, 2003; Kruchten, 2004), most
utilize the RUP as a compilation of modular, electronic resources including a versioned
process definition (that is updated approximately twice per year) and a multitude of
integrated support software. The RUP contains the activities, artifacts, guidelines, and
examples necessary for modification and configuration by the adopting organization.

Each of the nine disciplines shown in Figure 10 is comprised of a set of specified
activities. For example, in the UPEDU (the RUP for students) the requirements
management discipline consists of five activities:

• Elicit stakeholder requests
• Find actors and use cases
• Structure the use-case model
• Detail a use-case model
• Review requirements

Each discipline has its own set of artifacts. The RUP defines about 30 top level artifacts.
One role is responsible for each of these artifacts. For example, the UPEDU requirements
management workflow has the following artifacts associated with it.

• Vision (provides stakeholders with a high level description of the product to be
developed)

• Glossary (defines terms in the application domain that are needed to understand
the requirements)

• Software requirements specification (functional requirements)
• Supplementary specification (nonfunctional requirements)
• Use case (describes the interactions between a user and a system)
• Use case model (all the actors and all the use cases, the totality of the functional

behavior of the system)
Most often in RUP, artifacts are not paper documents. Instead, artifacts are contained
within the tool that is used to create them, maintain them, and to help the developer make
progress on the product. For example, a project requirements database in Rational
RequisitePro is an example of an artifact.

Artifacts typically have associated guidelines and checkpoints, which present information
on how to develop, evaluate, and use the artifacts. Some artifacts have concept pages
associated with them. Additionally, templates (e.g. blank forms) are often associated with
artifacts. Activities (or tasks) to accomplish process steps are defined in the RUP. The
concept page for each artifact links the activities of the RUP by listing the activities that
lead into the artifact and the activities to which the artifact contributes.

3.3 Roles
RUP defines the roles necessary to complete the disciplines. Roles have responsibility for
particular activities and associated artifacts. A role in RUP may be performed by an

© Laurie Williams 2004 Page 22 of 26

individual or by a group of people. Equally, an individual or a group may perform several
roles, even in the course of one day.

The recommended roles for a particular product are dependent upon the project
characteristics (the bigger the project, the more roles are necessary). Some example roles
are given here:

• Analyst, who is responsible for eliciting the needs from the stakeholders, and
communicating the needs to the development team.

• Designer, who identifies and defines the design and makes sure it is consistent
with the system architecture.

• Implementer, who is responsible for developing and testing software components.
• Reviewer, who reviews the software product or development activities.
• Test Designer, who defines the test approach to make sure the test is successfully

implemented.
• Tester, who implements and runs the test suites.
• Integrator, who is responsible for planning and performing integration tasks.
• Project manager, who manages the resource and activities of the project to ensure

the success of the outcome.
• Technical writer, who composes the communications from the developer for the

product stakeholder.
• Software architect, who is responsible for the system architecture.
• User interface designer, who works with the developers to produce desired user

interface.

3.4 Process
The RUP process is based upon six best practices:

1. Develop software iteratively.
2. Manage requirements.
3. Use component-based architectures.
4. Visually model software.
5. Continuously verify software.
6. Control changes to software.

In the RUP, the work is broken into nine workflows, as denoted in the vertical axis in
Figure 10. These nine disciplines are briefly explained:

• Business modeling: Describing the business processes of a company for which
the software is to be developed.

• Requirements management. Eliciting, organizing, and documenting
requirements.

• Analysis and design. Creating the architecture and the design of the software
system.

• Implementation. Writing, debugging, building and unit testing source code.
• Test. Testing via integration, system, and acceptance testing.

© Laurie Williams 2004 Page 23 of 26

• Deployment. Packaging the software, creating installation scripts, writing end
user documentation, and other tasks necessary for delivering the software to
customers.

• Project Management. Project planning and monitoring.
• Configuration and Change Management. Planning and utilizing version and

release management and change request management.
• Environment. Adapting the RUP process to the needs of the environment and

selecting, introducing, and supporting development tools.

The product cycle is divided into four types of phases; each phase may be run in one or
more iterations. The iterations are show in Figure 10 as Elab #1, Elab #2, and so on. Each
iteration builds upon the results of the previous iteration(s).

• Inception. Defining the objectives of the project, including the business case. This
involves risk analysis, initial project plans, and resource requirements.

• Elaboration. Creating and validating the architecture of the software system,
capturing the most important and critical requirements, and planning and
estimating the rest of the project. The use cases developed in the inception phase
are done in greater detail.

• Construction. Implementing the system based on the executable architecture
created in the elaboration phase.

• Transition. Beta testing the system with some customers and preparing release
candidates.

3.5 Discussion

RUP is a “generic” process framework that can be specialized for a large class of
software systems, for different application areas, different types of organizations,
different competence levels, and different project sizes. Organizations can modify, adjust,
and expand the RUP to accommodate their specific needs, characteristics, constraints,
culture, and domain. In doing so, the organizations can benefit from the years of
experience of the many people who have contributed to its development.

The initial intent of the RUP was an organization that would be able to compose a set of
best practices to meet the needs of a particular project—large or small. However, many
still view the RUP as impractical for small, fast-paced projects. Some have worked to
dispel this perception. Object Mentor has created RUP-XP and others, such as Hirsch
(Hirsch, 2002), have surfaced the adaptable, agile aspects of the process. Hirsch
emphasizes the need to carefully select the proper subset of artifacts and to keep the
artifacts concise and free from unnecessary formalism.

Many plan-driven methods suffer from the difficulty in “tailoring down” just discussed.
(Boehm and Turner, 2003) The experts who develop the methods provide guidance for
most situations and make the methods “tailor down-able.” However, the users of the
process don’t have the experience the expert-authors have and often “take it all” in terms
of the full set of plan, specification, and standards and cannot confidently tailor down to

© Laurie Williams 2004 Page 24 of 26

their own projects. (Boehm and Turner, 2003) This must be taken into consideration
when adopting a plan driven method.

4 Summary
Several practical tips for using plan-driven methodologies were presented throughout this
chapter. The keys for successful use of choosing and using plan-driven methodologies
are summarized in Table 4.

 The PSP can be used by an individual software engineering to improve his or her
ability to consistently produce a high-quality software product on time.

 If a software engineer tracks the time he or she spends on their tasks, they can
make better predictions for future commitments. Software engineers are often
pressured to produce software according to an imposed schedule based upon a
business objective date. By making sound commitments based on historical data,
engineers can astutely and defensively fend off pressure to make unrealistic
commitments. When an engineer makes an unrealistic commitment, often his or
her personal life is impacted in an attempt to make the commitment.

 Using team roles outlined in the TSP, a team can produce their product in an
organized fashion.

 In TSP, the Launch meeting provides the customer with the opportunity to state
and/or re-state their product objectives. Additionally, the software engineers can
devise realistic commitments for meeting these objectives.

 The RUP was specifically designed to use the UML diagrams taught throughout
this book.

 The RUP can be customized to meet the needs of the team and the product.
Table 4: Key Ideas for Plan-Driven Methodologies

In this chapter, we provided an overview of three prominent plan-driven methodologies,
PSP, TSP, and RUP. We emphasized that each of these methodologies also has agile
aspects to it and/or can be adapted for a situation in which agility would be beneficial or
for smaller projects. The PSP is a structured framework of forms, guidelines, and
procedures that guides an engineer in using a defined, measured, planned, and quality
controlled process. Additionally, the PSP helps engineers understand their own skills so
they can modify the process to meet their personal needs and preferences and to improve
their own personal performance. The TSP provides a structure for self-directed teams to
plan and track their work, to establish goals, and to create and own their processes and
plans. It also provides guidance to individual software engineers on how to perform as an
effective team member. Finally, the RUP is a methodology that specifically embeds
object-oriented techniques and uses UML as its principle notation. Additionally, the RUP
is a customizable process framework whereby, depending upon the project characteristics,
the RUP can be tailored or extended to match the needs of an adopting organization.

Acknowledgements
Many thanks to Watts Humphrey and Philippe Kruchten for reviewing this chapter.

Glossary of Chapter Terms

© Laurie Williams 2004 Page 25 of 26

Word Definition Source
Software
development
practice (or
technique)

a disciplined, uniform approach to the software
development process

(IEEE,
1990)

Software
development
process (or
methodology)

The process by which user needs are translated into a
software product. The process involves translating user
needs into software requirements, transforming the
software requirements into design, implementing the
design in code, testing the code, and sometimes installing
and checking out the software for operational use. Note:
these activities might overlap or be performed iteratively.

(IEEE,
1990)

Software
process model

simplified, abstracted description of a software
development process

References

Boehm, B. and R. Turner (2003). Balancing Agility and Discipline: A Guide for the

Perplexed. Boston, MA, Addison Wesley.
Chillarege, R., I. Bhandari, et al. (November 1992). "Orthogonal Defect Classification --

A Concept for In-Process Measurements." IEEE Transactions on Software
Engineering 18(11): 943-956.

Ferguson, P., W. S. Humphrey, et al. (May 1997). "Results of Applying the Personal
Software Process." IEEE Computer 30(5): 24-31.

Hayes, W. and J. W. Over, "The Personal Software Process: An Empirical Study of the
Impact of PSP on Individual Engineers," Software Engineering Institute,
Pittsburgh, PA CMU/SEI-97-TR-001, December 1997.

Hilburn, T. B. and W. S. Humphrey (September/October 2002). "Teaching Teamwork."
IEEE Software 19(5): 72-77.

Hirsch, M. (2002). Making RUP Agile. Conference on Object Oriented Programming
Systems Languages and Applications, Seattle, WA, ACM Press.

Humphrey, W. S. (1995). A Discipline for Software Engineering. Reading, MA, Addison
Wesley.

Humphrey, W. S. (1997). Introduction to the Personal Software Process. Reading,
Massachusetts, Addison-Wesley.

Humphrey, W. S. (1998). "Three Dimensions of Process Improvement, Part III: The
Team Process." Crosstalk April(4).

Humphrey, W. S. (2000). Introduction to the Team Software Process. Reading,
Massachusetts, Addison Wesley.

Humphrey, W. S. (2002). Winning with Software: An Executive Strategy. Boston,
Addison Wesley.

Humphrey, W. S. (May 1996). "Using a Defined and Measured Personal Software
Process." IEEE Software 13(3): 77-88.

© Laurie Williams 2004 Page 26 of 26

IEEE (1990). IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology.

Jacobson, I., G. Booch, et al. (1999). The Unified Software Development Process.
Reading, Massachusetts, Addison-Wesley.

Jacobson, I., M. Christerson, et al. (1992). Object-Oriented Software Engineering: A Use
Case Driven Approach. Wokingham, England, Addison-Wesley.

Kroll, P. and P. Kruchten (2003). The Rational Unified Process Made Easy: A
Practitioner's Guide to the RUP. Boston, Addison Wesley.

Kruchten, P. (2004). The Rational Unified Process: An Introduction. Boston, Addison
Wesley.

Robillard, P. N. and P. Kruchten (2003). Software Engineering Process with the UPEDU.
Boston, Addison Wesley.

Webb, D., Humphrey, Watts (1999). "Using the TSP on the TaskView Project." Crosstalk
February 1999(2).

Chapter Questions

1. Name at least five characteristics of plan-driven methodologies.
2. What are the factors that distinguish RUP from the PSP and TSP?
3. Explain the relationship between PSP and TSP.
4. Name and explain the team roles of the TSP and of RUP.
5. What is the purpose of having templates, scripts, and checklists in the TSP and the

PSP?
6. Based on the layout of the chapter, we can summarize three elemental components in

a software process. Identify these three components.
7. List the phases in RUP.
8. Describe the process of TSPi.
9. What are the three levels of PSP?
10. In RUP, software engineering process is organized by nine disciplines. Describe the

nine disciplines in RUP

