L6 S1ale o1 (e praclice...................cccceneennee.es

nuited article

Gapers Jones, Software Productivity Research

y colleagues and I at Software Productivity Research gathered
data on approximately 12,000 software projects between 1984
and 2003. We did this primarily to perform assessments and
benchmark studies on software development quality and produc-

tivity. Part of the data includes descriptions of each project’s software develop-

ment practices. We also collected information on software development activ-

ities, tools, programming languages, and specialized personnel on projects.

To more easily analyze this large volume of
information, we separated software projects
into distinct categories that share a nucleus of
common development methods and person-
nel. Size and type of software applications are
the two major categories we used.!

In our analysis, we used a list of 25 stan-
dard software development activities, check-
ing off which of these activities were included
in the projects we examined. Of course, such a
general checklist isn’t perfect. We often en-
counter activities that are either not on the list

Research on over 18 years of software projects reveals that
developing large systems involues substantially more activities

and a greater variety of specialized personnel than developing
smaller systems.

22

IEEE SOFTWARE

Published by the IEEE Computer Society

or performed infrequently. We also recorded
which occupation groups are associated with
software development. I use a shortened list of
occupations in this article—these 30 are the
most commonly noted software occupations
in the US.

Categorizing software applications

Although size is somewhat ambiguous in
the literature, we found that function point
metrics>™* rather than lines-of-code metrics
provide a useful framework. To analyze soft-
ware development practices, we divide proj-
ects into six size plateaus, each an order of
magnitude apart: 1, 10, 100, 1,000, 10,000,
and 100,000 function points.

Software projects measuring less than 100
function points are usually enhancements to
older, larger applications. Major new software

0740-7459/03/$17.00 © 2003 IEEE

applications for business purposes most often
measure between 10,000 and 100,000 func-
tion points. For example, both the Microsoft
Windows and IBM MVS operating systems
are roughly 100,000 function points. Many
business and technical software applications
such as accounting systems and telephone
switching systems are between 10,000 and
100,000 function points.

We define type by placing applications into
families that share common constraints and de-
velopment methods. For convenience, we iden-
tified six major software types for our studies:

B Military. These applications are built ac-
cording to military or US Department of
Defense standards. Although weapons
systems come to mind as a primary form
of military software, the category is actu-
ally much broader. For example, logistics
and support software applications—and
even those for payroll and accounting—
use military standards.

B Systems. These applications control hard-
ware devices such as computers, aircraft,
telephone switches, and other physical de-
vices and products. This type also includes
software that’s embedded in hardware de-
vices, such as software that controls car
fuel-injection systems or some manufac-
turing robots.

m Commercial. Developers build these appli-
cations for lease or sale to external cus-
tomers. This category includes many per-
sonal computer applications such as word
processing and spreadsheet programs. It
also includes larger mainframe applica-
tions such as enterprise resource-planning
packages.

B Outsourced. This category includes appli-
cations that one or several companies
build for a specific client company under a
contract. Because of contractual obliga-
tions and the possibility of litigation, out-
sourced projects have some additional
activities in comparison to in-house devel-
opment. For example, outsourced projects
might include special requirements for
handling scope changes or new require-
ments, special accounting and tracking re-
quirements, and special protocols for deal-
ing with errors or bugs.

B Management information systems (MIS).
Companies and government agencies

build these applications to control major
business functions such as accounting, mar-
keting, sales, and personnel. This category
includes many traditional mainframe appli-
cations such as accounting systems, order-
entry systems, payroll applications, and
sales-support applications. It also includes
the more recent client-server and Web-
based applications.

B End-user development. This category refers
to small applications that various kinds of
knowledge workers—such as accountants,
engineers, or project managers—build for
personal use. I won’t discuss this applica-
tion type in depth because the developers
aren’t full-time software personnel.

In many industries, building large products
isn’t the same as building small products. Con-
sider the differences in specialization and
methods that building a rowboat versus build-
ing an 80,000-ton cruise ship requires. One
person can construct a rowboat using only
hand tools. But a large, modern cruise ship re-
quires over 250 workers, including specialists
such as pipe fitters, electricians, steel workers,
painters, and even interior decorators.

Software follows a similar pattern: Building
a large system in the 10,000-100,000 function
point range is basically equivalent to building
large structures such as ships, office buildings,
and bridges. Such a project uses many kinds of
specialists for extensive development activities.

We compare the development activities in-
cluded in software projects from the six differ-
ent size plateaus in Table 1.

Projects below the 1,000-function point
plateau (roughly equivalent to 100,000 source
code statements in a procedural language such
as Cobol include less than half of the activi-
ties. However, large systems in the 10,000-
100,000 function point range perform more
than 20 of these activities.

When we examine the occupations associ-
ated with software projects, we find that large
systems use many more kinds of specialists
than small projects. We list the occupation
groups noted by project size in Table 2.

From Tables 1 and 2, we can conclude that
size strongly influences development activities
and the need for specialized personnel. Gener-
alists usually develop small projects using in-
formal development methods. It usually takes

November/December 2003

Generalists

usually develop
small projects
using informal

development
methods.

IEEE SOFTWARE

23

No. of function points

Development activities for six project size plateaus and types

Project types

Activity 1 10 100 1,000 10,000 100,000 Enduser MIS Outsourced Commercial Systems Military
Requirements v v / 4 v v v v v v v
Prototyping v v v v v v 4 4 v
Architecture v v v v v v
Project plans 4 v 4 v v 4 4 v
Initial design o/ 4 v v v v v 4 v
Detail design 4 4 v v v v v 4 v
Design reviews v v v 4 4 v
Coding v v / 4 v v 4 v v v 4 v
Reuse acquisition v v / 4 v v v v v v v v
Package purchase v v v/ v/ v v v
Code inspections 4 v/ 4 v v v 4
Independent verification & validation v
Change control 4 v/ v v v v 4 v
Formal integration v v v v v 4 4 v
User documentation 4 4 v v v v v 4 v
Unit testing v v / 4 v 4 4 v v v 4 v
Function testing v v v v v v 4 4 v
Integration testing v v v v v 4 4 v
System testing 4 v v v v 4 4 v
Beta testing v v 4 4 v
Acceptance testing 4 v v v v 4 4 v
Independent testing v
Quality assurance v v v v 4
Installation & training v v v v v 4 4 v
Project management v v v v v v 4 4 v
Total no. of activities 4 5 9 18 22 23 4 18 22 23 23 25

24

IEEE SOFTWARE

teams of specialized personnel using much
more complicated methodologies to develop
large systems.

Variations and types of software

The second factor that influences software
development practices is the type of software
being constructed. For example, the methods
for building military software are very differ-
ent from civilian norms.’ The systems and
commercial software domains also have fairly
complex development activities compared to
MIS activities, such as formal specification
methods and highly formal quality-assurance
and defect-tracking protocols. The outsource
domain, due to contractual requirements,
also uses a fairly extensive set of development
activities.

Table 1 notes the differences in develop-
ment activities across the six types of software
we studied. The activities for outsourced,
commercial, systems, and military software
are somewhat more numerous than for MIS
projects where development processes are of-
ten somewhat rudimentary.

http://computer.org/software

Software type also significantly impacts the
personnel and kinds of specialists involved in
systems development. Overall, the systems
and military domains tend to employ the most
specialists, followed closely by the commercial
domain. The MIS domain is more likely to use
generalists who perform analysis, design, cod-
ing, and testing tasks.

Table 2 shows the kinds of occupation
groups that we have noted across the six proj-
ect types. It shows that commercial, systems,
and military software require more specialized
occupation groups than MIS and outsourced
projects.

It’s interesting that companies building sys-
tems and military software are more than
twice as likely to have formal QA departments
and testing specialists than companies build-
ing MIS software, as we’ve seen in our studies.
We might attribute this to the fact that com-
panies building complex physical devices have
used QA departments since before computers
even existed. When computers and software
became part of the product, they naturally ap-
plied historical QA roles to software as well.

Occupation groups for six project size plateaus and types
No. of function points Project types

Occupation 1 10 100

Architects

1,000

10,000 100,000 End user

<
N

v/

v/

v

AN

MIS Outsourced Commercial Systems Military

Configuration control v

v

4 4

Cost analysis

Cost estimating

Customer support

ANENENEN

Data administration

Data base design

NSNS

ANENENENENEN

Data quality

Education & training

NEASASASRSRSANAY

AN

\

SIS SIS NSNS

Function point analysis

SIS SN SN NS
N

Globalization

Graphics

Human factors

Integration

Librarians 4

NSNS S

Metrics & measures

N
AN

Networks

\

AN

Performance analysis

Programming v v 4

Project management

Project planning

Quality assurance

NESASAY
ANENENEN

AN NN

Reliability

Reusability

AN

Security

Software engineering

Standards

Systems analysis

Technical writers

Testing

ANNENENENENENENENENENENENENENENENENEN

NESASAY

SNEN AN NN NN NN ENENENENENENENENENENEN

AN NN NN ENENE N ENENENENESNENENENENENENEN

Total no. of occupation groups 1 1 3

7

21

[N]
[{e]

1 11 18

NS
(2]

N
[{e]

Overall software development
observations

After examining more than 12,000 projects,
we can categorically state that no single devel-
opment method is universally deployed. All
software projects need forms of requirements
gathering, design, development or coding, and
defect removal, such as reviews, inspections,
and testing. But the methods for handling these
generic activities aren’t uniform. In the projects
we examined, we noted over 40 methods for
gathering requirements, over 50 variations in
handling software design, over 700 program-
ming languages, and over 30 forms of testing.

We find some of the most interesting simi-
larities associated with software classes. Ap-
parently because of tradition, people building
software projects within the same class tend to
build them similarly. Here we present the
more interesting class-related findings.

Military

Before 1994, military software development
was unique and specialized due to stringent
military standards that controlled almost every
aspect of software design and development. In
1994, the US Department of Defense began the
move to civilian best practices, which is still
ongoing even in 2003. The US Air Force soft-
ware journal Crosstalk, published by the Soft-
ware Technology Support Center, is a good
source of information on the evolution of mil-
itary and defense software practices.

The military standards seemed to be based
on a lack of trust between vendors and the
military services. As a result, military projects
had elaborate oversight criteria and extensive
tracking and documentation requirements.
For example, the volume of military require-
ments, specifications, and planning documents
was two to three times larger than civilian

November/December 2003

IEEE SOFTWARE

25

_ projects of the same size. More than half the

The commercial
software world
does have one
fairly unique

qualitv
approach:
external testing

by dozens or
even hundreds

of customers.

26

IEEE SOFTWARE

cost of building large defense projects went to
the production of English words. About 400
words were written for every line of Ada code
in typical military applications.

The military community has been fairly suc-
cessful in building large and complex applica-
tions such as weapons systems. However, pro-
ductivity rates are far lower than civilian norms.
In recent years, the military domain started us-
ing the Capability Maturity Model created by
Watts Humphrey and his colleagues at the Soft-
ware Engineering Institute.® Many more mili-
tary than civilian projects use the CMM, which
is why military projects use both specialists and
extensive sets of development activities.

Military projects are roughly equal to civil-
ian systems software in defect removal effi-
ciency—often with a 95 percent defect re-
moval rate or better. However, military
projects use two additional defect removal
steps that civilian projects seldom use: inde-
pendent verification and validation and inde-
pendent testing. Some defense projects have
used as many as 16 different kinds of testing—
more than any civilian project we examined.

Systems

Because systems software controls compli-
cated and expensive physical devices such as
computers, aircraft, and telephone systems,
quality is a key factor. The systems and em-
bedded software projects we looked at were
more likely to use formal QA departments and
testing departments staffed by full-time test
personnel. The systems software community is
also most likely to use formal design and code
inspections and deploy thorough quality
measurement systems.

The systems software community has the
highest defect removal efficiency levels. It’s the
only type to average over 95 percent in finding
and removing bugs or defects prior to release.
This is due in part to the use of reviews, in-
spections, and six to 12 different kinds of test-
ing activities on major projects.

Commercial
The commercial software world, headed by
Microsoft and including other vendors such as
SAP, IBM, and Computer Associates, is fairly
strong in change control, customer support,
documentation, training, and globalization.
However, commercial software lags behind

http://computer.org/software

systems software in quality-control methodolo-
gies. The commercial world isn’t as likely to use
pretest design reviews and code inspections.
Neither is it as likely to use formal QA teams or
have rigorous quality measurement systems
during development. On the other hand, meas-
urements of customer-reported complaints and
defects after release are fairly good. We’re not
saying that all commercial vendors have poor
quality control. IBM, for example, has long led
the world in quality control; it was the first
company known to measure defect removal ef-
ficiency and the first to top 95 percent. But we
examined software from more than 25 vendors,
and the overall quality results aren’t as good as
they should be, only averaging around 90 per-
cent in defect removal efficiency.

The commercial software world does have
one fairly unique quality approach: external test-
ing by dozens or even hundreds of customers.
Known as beta testing, the commercial world
has been using this method since the 1960s.
(Systems software and some military projects
also use beta testing.) Overall, defect removal
efficiency in the commercial world is lower
than the systems and military communities.

Outsourced

The outsource community includes major
companies such as Electronic Data Systems,
Computer Sciences Corporation, Accenture,
IBM, Lockheed, and more. This community is
a bit more sophisticated than the MIS commu-
nity, which constitutes the main client base for
outsourcers. The outsource community is
likely to use formal planning and change con-
trol methods. Outsourcers also widely deploy
requirements gathering and analysis using joint
application design (JAD). This isn’t surprising
because requirements changes usually lead to
cost increases and design and code changes.
The outsource community is fairly good in
quality control and quality measurements.

Outsourcers aren’t as good as the systems
community in quality but better than the MIS
community. This is because outsourcers often
use design reviews, code inspections, and testing
specialists. Defect removal efficiency in the out-
source world runs 90 to 94 percent.

Management information systems

By looking at the results of in-house devel-
opment projects, it’s easy to see why so many
companies—such as banks and insurance

companies—consider outsourcing. The MIS
community is very backwards in quality con-
trol. It’s less likely than most to use formal de-
sign reviews and code inspections, formal QA
groups, or testing specialists. Quality in the
MIS world depends on fairly rudimentary test-
ing, which the developers carry out them-
selves. MIS projects averaged about 85 per-
cent defect removal efficiency for many years.
Unfortunately, client-server projects and Web-
based applications are often even lower, some-
times dipping below 80 percent.

The good news for the MIS community is
that requirements gathering and analysis using
JAD is both common and fairly successful.
Even so, the measured rate at which require-
ments change can top 2 percent per calendar
month during development.

Interestingly, this community is better than
average in productivity measurements. It pio-
neered the use of function point metrics for
productivity studies and is more likely than
any other group to employ certified function-
point counting personnel. The MIS domain
has more productivity data using function-
points collected and published than any other.

End-user development

There is little to be said about end-user de-
velopment. Various knowledge workers create
these small applications (all are less than 100
function points) for private use. These devel-
opments have no formal requirements and
usually no design documentation. Amateur
programmers write many end-user applica-
tions in languages such as Basic or Visual Ba-
sic—their traditional languages. They might
create some applications using spreadsheets if
they will serve financial purposes.

The originator performs any end-user test-
ing. Although these projects seldom measure de-
fect removal, when they do, it’s usually less than
60 percent. Because the developer is also the
user, these programs don’t have user manuals.
So once the originator changes jobs or retires,
the applications are usually discarded. End-user
applications are interesting to create but have
limited or even negative business value.

ome of the observations and conclu-
sions from our studies support com-
monsense notions. For example, we
noted that software specialists appear to be

About the Author

Capers Jones is chief scientist emeritus of Software Productivity Research, a subsidiary
of Artemis Management Solutions. His research interests indude software cost and schedule es-
timating, software quality control methods, and software metrics and measurements. He re-
ceived his BA in English from the University of Florida. He is a member of the IEEE Computer
Society and a lifefime member of the International Function Point Users Group. Contact him

at Software Productivity Research, 6 Lincoln Knoll Dr., Burlington, MA 01803; cjones@

spr.com.

valuable and raise the odds of software proj-
ects succeeding. We also noted that for proj-
ects larger than 1,000 function points, those
with QA teams and formal defect-tracking
methods have better chances for meeting
planned schedules and planned budgets than
projects with informal quality control.

A few observations were surprising and
perhaps counterintuitive. For example, we
didn’t find that any specific design method or
programming language guaranteed either a
successful or troubled project outcome. How-
ever, projects that used almost any kind of for-
mal design method tended to have better qual-
ity than similar projects with informal or
amorphous design.

Perhaps the most significant observation is
that good quality control is the best overall in-
dicator of a successful project. Schedule delays
and cost overruns most often occur when you
discover during testing that the application
has so many bugs that it doesn’t work. Pro-
jects using QA teams, formal design and code
inspections, and pretest defect tracking always
had shorter testing cycles and therefore were
more likely to be deliverable on schedule. @

References

1. C. Jones, Software Assessments, Benchmarks, and Best
Practices, Addison-Wesley, 2000.

2. International Function Point Users Group Web site,
www.JFPUG.org.

3. S.Kan, Metrics and Models in Software Quality Engi-
neering, 2nd Ed., Addison-Wesley, 2002.

4. D. Garmus and D. Herron, Measuring the Software
Process: A Practical Guide to Functional Measurements,
Prentice Hall, 1995.

5. C. Jones, “Defense Software in Evolution,” Crosstalk,
vol. 15, no. 11, Nov. 2002, pp. 26-29.

6. W.S. Humphrey, Managing the Software Process, Addi-
son-Wesley, 1989.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

November/December 2003

IEEE SOFTWARE

27

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

