

SWEN 256 – Software Process & Project Management

What is quality?

A definition of quality should emphasize three important
points:

1. Software requirements are the foundation from which
quality is measured. Lack of conformance to requirement is
lack of quality.

2. Specified standards define a set of development criteria
that guide the manner in which software is engineered. If
the criteria are not followed, lack of quality will almost
surely result.

3. There is a set of implicit requirements that often goes
unmentioned (e.g. good maintainability). If software
conforms to its explicit requirements but fails to meet
implicit requirements, software quality is suspect.

[DACS]

 The purpose of software testing is to assess and evaluate

the quality of work performed at each step of the software

development process.

 Although it sometimes seems that way, the purpose of

testing is NOT to use up all the remaining budget or

schedule resources at the end of a development effort.

 The goal of testing is to ensure that the software performs

as intended, and to improve software quality, reliability and

maintainability.

Software testing is a full-life-cycle assessment of quality

[DACS]

 A good development process, tools, methods, and people
go far in providing quality products

 Testing is one aspect of assuring software quality
o It is a measure of quality, it does not deliver quality

 “Quality cannot be tested into a product”

 Software Quality Assurance includes

o Software engineering process improvement
• Prevent the insertion of defects

o Fault tolerant software design
• Tolerate the existence of defects

o All aspects of software verification and validation
• Including testing

 Failures are usually a result of system errors (which turn

into defects) that are derived from faults in the system

 However, faults do not necessarily result in system failures

o The faulty system state may be transient and ‘corrected’ before

an error arises

 Errors do not necessarily lead to system failures

o The error can be corrected by built-in error detection and recovery

o The failure can be protected against by built-in protection

facilities

• For example, protect system resources from system errors

[Sommerville]

Human

(developer)

Error

Software

Defect

(bug)

System

Fault

System

Failure

Build time Run time

Defect prevention

and reduction

Fault detection

and containment

Latent

(dormant)

defect

Assuring that a software system meets a user's needs

 Verification:

o “Are we building the product right?”

o The software should conform to its design

 Validation:

o “Are we building the right product?”

• Validate requirements

o “Did we build the right product?”

• Validate implementation

o The software should do what the user really requires

 V&V: Build the right product and build it right!

[Sommerville]

 V&V is a whole life-cycle process

o V & V must be applied at each stage in the software

process

 V&V has two principal objectives

o The discovery of defects in a system

o The assessment of whether or not the system is usable

in an operational situation

[Sommerville]

 Software testing:

o Concerned with exercising and observing product

behavior

o Dynamic V&V

 Software inspections:

o Concerned with studying software product artifacts to

discover defects

o Static V&V

o May be supplemented by tool-based (semi-automated)

document and code analysis

 Depends on:

o System’s purpose

• Criticality of software function

• Mission critical (organization depends on it)

• Safety critical

• Societal impact

o User expectations

o Marketing environment

 Cost-benefit trade-offs

o High confidence is expensive. Is it necessary?

 At each stage of the software development

process, there are activities that should be done

which will help develop the testing plans and test

cases

 Remember: V&V is expensive.

o Plan to do it right the first time!

 Plan and develop tests throughout the life cycle
 Implement tests when there is an implementation ready to test
 Iterative and incremental: Repeat “V” at each iteration

http://blog.sei.cmu.edu/post.cfm/using-v-models-testing-315

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=jOTq8kl0kiW8RM&tbnid=AfOsaGO7upN1sM:&ved=0CAUQjRw&url=http%3A%2F%2Fblog.sei.cmu.edu%2Fpost.cfm%2Fusing-v-models-testing-315&ei=Scw6U8vGJJPJsQT9z4DQDA&bvm=bv.63934634,d.dmQ&psig=AFQjCNFQitYNBYq-7HkgKLA7zqk51yPezw&ust=1396448682562697

Quality as a System and a Process

Quality assurance (QA) activities strive to ensure:

 Few, if any, defects remain in the software system when it is

delivered

 Remaining defects will cause minimal disruptions or

damages

 The following need to be considered: Scope, Stakeholders,

Risks, Internal and External Environmental Factors, Process

 Project-specific standards and procedures are created

o Based on quality standards for each deliverable

o Includes how PM activities themselves should be done

o Plans/Project must comply with external standards (CISG,

ISO 9000, OSHA, etc)

o Plans/Project must comply with organizational standards

o Plans/Project must meet the customer’s quality standards

o Tracking / Proof may be needed (metrics, measurements,

etc.)

 Defect Prevention

o Remove (human) error sources

o Block defects from being injected into software artifacts

 Defect Reduction

o Detect defects

• Inspection

• Testing

o Remove defects

• Debugging—iterate on the software engineering activity

• Rework requirements, design, code, etc.

 Defect Containment

o Fault tolerance

o Fault containment

Remove the root causes of errors

 Education and training address human misconceptions that

cause errors

o Domain and product knowledge

o Software engineering process

o Technology knowledge

 Formal methods can help identify and correct imprecise

specifications, designs and implementations

 Standards conformance, use of best practices and patterns

can help prevent fault injection

 Discover and remove defects

 Inspection: direct fault detection

o requirements, design, code, manuals, test cases

 Testing: failure observation and fault isolation

o Execute the software and observe failures

o Use execution history/records to analyze and locate fault(s) and

defect(s) causing the failure

 Need implemented software to execute

 Need software instrumentation, execution history to:

o isolate faults

o trace to defects

 Impossible to test everything

o - Expensive to test most things

 Risk of too much and not enough testing

o - Use project risks to guide investment

Quantity

Amount of

Testing

Cost of

testing

Number of

missed defects

Optimal

Amount of

Testing

Over-testing Under-testing

 Denotes a potential negative impact that may arise from
some present process or from some future event.

 What is your risk exposure to a defect that is hidden?

o Likelihood of defect existence

o Likelihood of failure occurrence

o Impact if failure occurs

 Risk exposure determines ...

o Testing priority

o Testing depth

o What to test and not to test

http://en.wikipedia.org/wiki/Impact
http://en.wikipedia.org/wiki/Process_(general)

 Software fault tolerance

o Safety-critical or mission-critical software often must be fault

tolerant

• The system can continue in operation in spite of a fault occurrence

o Techniques: exception handling, recovery blocks

 Software failure containment

o Fault detection and isolation

o Techniques:

• safety interlocks,

• physical containment (barriers),

• disaster planning, etc.

e1

e2

e3

e4

e5

e6

f1

f2

f3

f4

x1

x2

Error

Sources

Faults
Failures

Input to Software

Development

Software

System
Usage Scenarios

and Results

a

presence of “a”

a

“a” causes “b”

b Legend

defect barrier/remover

a

removal of “a”

Error

Removal

Fault

Removal

Failure

Containment

Failure

Prevention

 QA ensures software:

o delivered with few defects,

o remaining defects will cause minimal disruptions or damages

 QA techniques:

o classified according to

• how

• when they handle defects

o defect prevention,

o reduction,

o containment

Defect prevention:

 Remove the root cause of human errors

Defect reduction:

 Discover defects

o uses inspection

o testing

Defect containment:

 Limit the impact of a fault

o uses fault tolerance

o fault & failure containment

 [DACS] Data and Analysis Center for Software, Software

Reliability Source Book, http://iac.dtic.mil/dacs

 [Patton] Ron Patton, Software Testing, Sams Publishing,

2001.

 [Sommerville] Ian Sommerville, Software Engineering, 6th

Edition, Addison-Wesley, 2001.

 [RUP] Rational Unified Process, IBM Rational Software

(installed on lab machines)

 [Whittaker] “What Is Software Testing? And Why Is It So

Hard?,” IEEE Software, January-February 2000, pp. 70-79.

