
 
SWEN 256 – Software Process & Project Management

What is quality?

A definition of quality should emphasize three important
points:

1. Software requirements are the foundation from which
quality is measured. Lack of conformance to requirement is
lack of quality.

2. Specified standards define a set of development criteria
that guide the manner in which software is engineered. If
the criteria are not followed, lack of quality will almost
surely result.

3. There is a set of implicit requirements that often goes
unmentioned (e.g. good maintainability). If software
conforms to its explicit requirements but fails to meet
implicit requirements, software quality is suspect.

[DACS]

 The purpose of software testing is to assess and evaluate

the quality of work performed at each step of the software

development process.

 Although it sometimes seems that way, the purpose of

testing is NOT to use up all the remaining budget or

schedule resources at the end of a development effort.

 The goal of testing is to ensure that the software performs

as intended, and to improve software quality, reliability and

maintainability.

Software testing is a full-life-cycle assessment of quality

[DACS]

 A good development process, tools, methods, and people
go far in providing quality products

 Testing is one aspect of assuring software quality
o It is a measure of quality, it does not deliver quality

 “Quality cannot be tested into a product”

 Software Quality Assurance includes

o Software engineering process improvement
• Prevent the insertion of defects

o Fault tolerant software design
• Tolerate the existence of defects

o All aspects of software verification and validation
• Including testing

 Failures are usually a result of system errors (which turn

into defects) that are derived from faults in the system

 However, faults do not necessarily result in system failures

o The faulty system state may be transient and ‘corrected’ before

an error arises

 Errors do not necessarily lead to system failures

o The error can be corrected by built-in error detection and recovery

o The failure can be protected against by built-in protection

facilities

• For example, protect system resources from system errors

[Sommerville]

Human

(developer)

Error

Software

Defect

(bug)

System

Fault

System

Failure

Build time Run time

Defect prevention

and reduction

Fault detection

and containment

Latent

(dormant)

defect

 

Assuring that a software system meets a user's needs

 Verification:

o “Are we building the product right?”

o The software should conform to its design

 Validation:

o “Are we building the right product?”

• Validate requirements

o “Did we build the right product?”

• Validate implementation

o The software should do what the user really requires

 V&V: Build the right product and build it right!

[Sommerville]

 V&V is a whole life-cycle process

o V & V must be applied at each stage in the software

process

 V&V has two principal objectives

o The discovery of defects in a system

o The assessment of whether or not the system is usable

in an operational situation

[Sommerville]

 Software testing:

o Concerned with exercising and observing product

behavior

o Dynamic V&V

 Software inspections:

o Concerned with studying software product artifacts to

discover defects

o Static V&V

o May be supplemented by tool-based (semi-automated)

document and code analysis

 Depends on:

o System’s purpose

• Criticality of software function

• Mission critical (organization depends on it)

• Safety critical

• Societal impact

o User expectations

o Marketing environment

 Cost-benefit trade-offs

o High confidence is expensive. Is it necessary?

 At each stage of the software development

process, there are activities that should be done

which will help develop the testing plans and test

cases

 Remember: V&V is expensive.

o Plan to do it right the first time!

 Plan and develop tests throughout the life cycle
 Implement tests when there is an implementation ready to test
 Iterative and incremental: Repeat “V” at each iteration

http://blog.sei.cmu.edu/post.cfm/using-v-models-testing-315

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=jOTq8kl0kiW8RM&tbnid=AfOsaGO7upN1sM:&ved=0CAUQjRw&url=http%3A%2F%2Fblog.sei.cmu.edu%2Fpost.cfm%2Fusing-v-models-testing-315&ei=Scw6U8vGJJPJsQT9z4DQDA&bvm=bv.63934634,d.dmQ&psig=AFQjCNFQitYNBYq-7HkgKLA7zqk51yPezw&ust=1396448682562697

 

Quality as a System and a Process

Quality assurance (QA) activities strive to ensure:

 Few, if any, defects remain in the software system when it is

delivered

 Remaining defects will cause minimal disruptions or

damages

 The following need to be considered: Scope, Stakeholders,

Risks, Internal and External Environmental Factors, Process

 Project-specific standards and procedures are created

o Based on quality standards for each deliverable

o Includes how PM activities themselves should be done

o Plans/Project must comply with external standards (CISG,

ISO 9000, OSHA, etc)

o Plans/Project must comply with organizational standards

o Plans/Project must meet the customer’s quality standards

o Tracking / Proof may be needed (metrics, measurements,

etc.)

 Defect Prevention

o Remove (human) error sources

o Block defects from being injected into software artifacts

 Defect Reduction

o Detect defects

• Inspection

• Testing

o Remove defects

• Debugging—iterate on the software engineering activity

• Rework requirements, design, code, etc.

 Defect Containment

o Fault tolerance

o Fault containment

Remove the root causes of errors

 Education and training address human misconceptions that

cause errors

o Domain and product knowledge

o Software engineering process

o Technology knowledge

 Formal methods can help identify and correct imprecise

specifications, designs and implementations

 Standards conformance, use of best practices and patterns

can help prevent fault injection

 Discover and remove defects

 Inspection: direct fault detection

o requirements, design, code, manuals, test cases

 Testing: failure observation and fault isolation

o Execute the software and observe failures

o Use execution history/records to analyze and locate fault(s) and

defect(s) causing the failure

 Need implemented software to execute

 Need software instrumentation, execution history to:

o isolate faults

o trace to defects

 Impossible to test everything

o - Expensive to test most things

 Risk of too much and not enough testing

o - Use project risks to guide investment

Quantity

Amount of

Testing

Cost of

testing

Number of

missed defects

Optimal

Amount of

Testing

Over-testing Under-testing

 Denotes a potential negative impact that may arise from
some present process or from some future event.

 What is your risk exposure to a defect that is hidden?

o Likelihood of defect existence

o Likelihood of failure occurrence

o Impact if failure occurs

 Risk exposure determines ...

o Testing priority

o Testing depth

o What to test and not to test

http://en.wikipedia.org/wiki/Impact
http://en.wikipedia.org/wiki/Process_(general)

 Software fault tolerance

o Safety-critical or mission-critical software often must be fault

tolerant

• The system can continue in operation in spite of a fault occurrence

o Techniques: exception handling, recovery blocks

 Software failure containment

o Fault detection and isolation

o Techniques:

• safety interlocks,

• physical containment (barriers),

• disaster planning, etc.

e1

e2

e3

e4

e5

e6

f1

f2

f3

f4

x1

x2

Error

Sources

Faults
Failures

Input to Software

Development

Software

System
Usage Scenarios

and Results

a

presence of “a”

a

“a” causes “b”

b Legend

defect barrier/remover

a

removal of “a”

Error

Removal

Fault

Removal

Failure

Containment

Failure

Prevention

 QA ensures software:

o delivered with few defects,

o remaining defects will cause minimal disruptions or damages

 QA techniques:

o classified according to

• how

• when they handle defects

o defect prevention,

o reduction,

o containment

Defect prevention:

 Remove the root cause of human errors

Defect reduction:

 Discover defects

o uses inspection

o testing

Defect containment:

 Limit the impact of a fault

o uses fault tolerance

o fault & failure containment

 

 [DACS] Data and Analysis Center for Software, Software

Reliability Source Book, http://iac.dtic.mil/dacs

 [Patton] Ron Patton, Software Testing, Sams Publishing,

2001.

 [Sommerville] Ian Sommerville, Software Engineering, 6th

Edition, Addison-Wesley, 2001.

 [RUP] Rational Unified Process, IBM Rational Software

(installed on lab machines)

 [Whittaker] “What Is Software Testing? And Why Is It So

Hard?,” IEEE Software, January-February 2000, pp. 70-79.

