

SWEN 256 – Software Process & Project Management

“Not everything that can

be counted counts,

and not everything

that counts can be

counted.”

- Albert Einstein

 Software measurement is concerned with deriving

a quantitative (numeric) value for an attribute of a

software product or process (largely qualitative)

 This allows for objective comparisons between

techniques and processes

 Although some companies have introduced

measurement programs, the systematic use of

measurement is still uncommon

 There are few standards in this area

Measure – provides a quantitative indication

of the size of some product or process

attribute

Measurement – the act of obtaining a

measure

Metric – a quantitative measure of the

degree to which a system, component, or

process possesses a given attribute

 Any type of measurement which relates to a
software system, process or related
documentation

o Lines of code in a program, number of person-days
required to develop a component

 Allow the software and the software process to be
quantified

 Measures of the software process or product

 May be used to predict product attributes or to
control the software process

Product

o Assess the quality of the design and

construction of the software product being built.

Process & Project

o Quantitative measures that enable software

engineers to gain insight into the efficiency of

the software process and the projects

conducted using the process framework

 Private process metrics (e.g., defect rates by
individual or module) are only known to by the
individual or team concerned.

 Public process metrics enable organizations to
make strategic changes to improve the software
process.

 Metrics should not be used to evaluate the
performance of individuals.

 Statistical software process improvement helps
and organization to discover where they are strong
and where they are weak

Why?

 A quality metric should be a predictor of product

quality

 Classes of product metric

o Dynamic metrics which are collected by

measurements made of a program in execution

o Static metrics which are collected by

measurements made of the system

representations

o Dynamic metrics help assess efficiency and

reliability; Static metrics help assess complexity,

understandability and maintainability

 A software team can use software project metrics

to adapt project workflow and technical activities

 Project metrics are used to avoid development

schedule delays, to mitigate potential risks, and to

assess product quality on an on-going basis

 Every project should measure its inputs

(resources), outputs (deliverables), and results

(effectiveness of deliverables)

George Santayana

 A software property can be measured

 The relationship exists between what we can

measure and what we want to know

 This relationship has been formalized and

validated

 It may be difficult to relate what can be measured

to desirable quality attributes

 Many software developers do not collect measures.

 Without measurement it is impossible to determine
whether a process is improving or not

 Baseline metrics data should be collected from a
large, representative sampling of past software
projects

 Getting this historic project data is very difficult, if
the previous developers did not collect data in an
on-going manner

 Direct measures of a software engineering process

include co$t and effort

 Direct measures of the product include lines of

code (LOC), execution speed, memory size, defects

reported over some time period

 Indirect product measures examine the quality of

the software product itself (e.g., functionality,

complexity, efficiency, reliability, maintainability)

 A software measurement process may be part of a

quality control process

 Data collected during this process should be

maintained as an organisational resource

 Once a measurement database has been

established, comparisons across projects become

possible

Measure
component

characteristics

Identify
anomalous

measurements

Analyse
anomalous
components

Select
components to

be assessed

Choose
measurements

to be made

 A metrics program should be based on a set of

product and process data

 Data should be collected immediately (not in

retrospect) and, if possible, automatically

 Three types of automatic data collection

o Static product analysis

o Dynamic product analysis

o Process data collation

 Don’t collect unnecessary data

o The questions to be answered should be decided in

advance and the required data identified

 Tell people why the data is being collected

o It should not be part of personnel evaluation

 Don’t rely on memory

o Collect data when it is generated not after a project

has finished

Management
decisions

Control
measurements

Software
process

Predictor
measurements

Software
product

 It is not always obvious what data means

o Analysing collected data is very difficult

 Professional statisticians should be consulted if

available

 Data analysis must take local circumstances into

account

 Derived by normalizing (dividing) any direct

measure (e.g., defects or human effort) associated

with the product or project by LOC

 Size-oriented metrics are widely used but their

validity and applicability is a matter of some debate

 Function points are computed from direct
measures of the information domain of a business
software application and assessment of its
complexity

 Once computed function points are used like LOC
to normalize measures for software productivity,
quality, and other attributes

 The relationship of LOC and function points
depends on the language used to implement the
software

 Number of static Web pages (Nsp)

 Number of dynamic Web pages (Ndp)

 Customization index: C = Nsp / (Ndp + Nsp)

 Number of internal page links

 Number of persistent data objects

 Number of external systems interfaced

 Number of static content objects

 Number of dynamic content objects

 Number of executable functions

 Fan in/Fan-out – Fan-in is a measure of the number of functions that call some other function

(say X). Fan-out is the number of functions which are called by function X. A high value for fan-in

means that X is tightly coupled to the rest of the design and changes to X will have extensive

knock-on effects. A high value for fan-out suggests that the overall complexity of X may be high

because of the complexity of the control logic needed to coordinate the called components.

 Length of code – This is a measure of the size of a program. Generally, the larger the size of the

code of a program’s components, the more complex and error-prone that component is likely to

be.

 Cyclomatic complexity – This is a measure of the control complexity of a program. This control

complexity may be related to program understandability. The computation of cyclomatic

complexity is covered in Chapter 20.

 Length of identifiers – This is a measure of the average length of distinct identifiers in a

program. The longer the identifiers, the more likely they are to be meaningful and hence the

more understandable the program.

 Depth of conditional nesting – This is a measure of the depth of nesting of if-statements in a

program. Deeply nested if statements are hard to understand and are potentially error-prone.

 Fog index – This is a measure of the average length of words and sentences in documents. The

higher the value for the Fog index, the more difficult the document may be to understand.

 Depth of inheritance tree – This represents the number of discrete levels in the

inheritance tree where sub-classes inherit attributes and operations (methods) from

super-classes. The deeper the inheritance tree, the more complex the design as,

potentially, many different object classes have to be understood to understand the

object classes at the leaves of the tree.

 Method fan-in/fan-out – This is directly related to fan-in and fan-out as described

above and means essentially the same thing. However, it may be appropriate to

make a distinction between calls from other methods within the object and calls

from external methods.

 Weighted methods per class – This is the number of methods included in a class

weighted by the complexity of each method. Therefore, a simple method may have a

complexity of 1 and a large and complex method a much higher value. The larger

the value for this metric, the more complex the object class. Complex objects are

more likely to be more difficult to understand. They may not be logically cohesive so

cannot be reused effectively as super-classes in an inheritance tree.

 Number of overriding operations – These are the number of operations in a super-

class which are over-ridden in a sub-class. A high value for this metric indicates that

the super-class used may not be an appropriate parent for the sub-class.

 Most software organizations have fewer than 20
software engineers.

 Best advice is to choose simple metrics that
provide value to the organization and don't require
a lot of effort to collect.

 Even small groups can expect a significant return
on the investment required to collect metrics, IFF
this activity leads to process improvement.

Reliability

Number of procedure
parameters

Cyclomatic complexity

Program size in lines
of code

Number of error
messages

Length of user manual

Maintainability

Usability

Portability

Number Metric Percentage

1 Number of defects found after a release 61%

2 Number of changes or change requests 55%

3 User or customer satisfaction 52%

4 Number of defects found during development 50%

5 Documentation completeness/accuracy 42%

6 Time to identify/correct defects 40%

7 Defect distribution by type/class 37%

8 Error by major function/feature 32%

9 Test coverage of specifications 31%

10 Test coverage of code 31%

Number Metric Percentage

1 Module/design complexity 24%

2 Number of source lines delivered 22%

3 Documentation size/complexity 20%

4 Number of reused source lines 16%

5 Number of function points 10%

