Change Control

Software Change

s Software change is inevitable

o New requirements emerge when the software is under
development or being used

o The business environment changes

o Errors must be repaired, Risks mitigated

o New equipment must be accommodated

o The performance or reliability may have to be improved

s A key problem for organisations is implementing
and managing change to their current projects and
legacy systems

Change During Development

s Sometimes change occurs during development

that necessitates changes in scope
o Approval of CCB (Change Control Board) and
o Requires extensive planning
o May require more time/resources (project triangle)

s Plan-driven methodologies may or may not have this built in
(i.e. Spiral) or may be specifically built to resist change (i.e.
Waterfall)

s« Agile Methodologies embrace change

o Scrum allows for change to the Product Backlog at any time, but
manages risk by freezing the current Sprint Backlog

so Stakeholder Communication IS KEY

Software Change Sirategies

so Software maintenance

o Changes are made in response to changed requirements
but the fundamental software structure is stable

so Architectural transformation

o The architecture of the system is modified generally from
a centralised architecture to a distributed architecture

s Software re-engineering

o No new functionality is added to the system but it is
restructured and reorganised to facilitate future changes

s These strategies may be applied separately or
together

Lehman’s Laws

Law Description
Contmnuing change A programthat is used in a real world environment
neces sarily must change or become progressively less

usefulin that envronment.

Increasing complexity

As an evolving program changes, its structure tends

to become more compkx. Extra res ources must be

devoted to preserving and simplifying the s tructure.

Large programevolution

Programevolution is a s elfregulating

System attributes such as size, time between rekases
and the number of reported errors are approximately
invariant for each s ystemrelease.

process.

Organs ational stability

Over aprogram’s lifetime, its rate of development is
approxmately constant and independent of the
resources devoted to systemdevelopment.

Cons ervation
familiarty

of

Over the lifetime of a system, the incremental change
in each releas e is approximately constant.

Applicability of Lehman’s Laws

s This has not yet been established

s They are generally applicable to large, tailored
systems developed by large organisations

s |t is not clear how they should be modified for
o Shrink-wrapped software products

o Systems that incorporate a significant number of COTS
components

o Small organisations
o Medium sized systems

Software Maintenance

O OB

Software Maintenance

s Modifying a program after it has been put into
use

s Maintenance does not normally involve major
changes to the system’s architecture

s Changes are implemented by modifying existing
components and adding new components to the
system

Maintenance 1s Inevitable

s The system requirements are likely to change
while the system is being developed because
the environment is changing. Therefore a
delivered system won't meet its requirements!

s Systems are tightly coupled with their environment.
When a system is installed in an
environment it changes that environment and
therefore changes the system requirements.

s Systems MUST be maintained therefore if they
are to remain useful in an environment

Iypes of Maintenance

s Maintenance to repair software faults
o Changing a system to correct deficiencies in the way meets

its requirements (Corrective Maintenance)
s Maintenance to adapt software to a different operating

environment
o Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation (Adaptive
Maintenance)

s Maintenance to add to or modify the system’s functionality

o Modifying the system to satisfy new requirements (Perfective
Maintenance)

Distribution of Maintenance Effort

Functionality

So ftw are .
addition or

adaptation
(18%)

modification

(65%)

Spiral Maintenance Model

//
Specification

Maintenance Costs

s Usually greater than development costs (2* to
100* depending on the application)

s Affected by both technical and non-technical
factors

so Increases as software is maintained.
Maintenance corrupts the software structure so
makes further maintenance more difficult.

s Ageing software can have high support costs
(e.g. old languages, compilers etc.)

Development/Maintenance Costs

System 1

System 2

I | | | | | | | | | |)

0 50 100 150 200 250 300 350 400 450 500 $

. Development costs M aintenance costs

Maintenance Co$t Factors

s Team stability

o Maintenance costs are reduced if the same staff are involved with
them for some time

s Contractual responsibility

o The developers of a system may have no contractual responsibility
for maintenance so there is no incentive to design for future change

so Staff skills

o Maintenance staff are often inexperienced and have limited domain
knowledge

so Program age and structure

o As programs age, their structure is degraded and they become
harder to understand and change

Evolutionary Software

s Rather than think of separate development and
maintenance phases, evolutionary software is
software that is designed so that it can
continuously evolve throughout its lifetime

YES, but how/much?

Maintenance Prediction

s Maintenance prediction is concerned with
assessing which parts of the system may cause
problems and have high maintenance costs

o Change acceptance depends on the maintainability of
the components affected by the change

o Implementing changes degrades the system and
reduces its maintainability

o Maintenance costs depend on the number of changes
and costs of change depend on maintainability

Maintenance Prediction

What parts of the system

will be the mostexpensive
Whatparts o f the system are to maintain?

mostlikely to be affected by

change requests?

Predicting
maintainability

What will be the lifetime
maintenance costs of this

Predicting sy stem Predicting system ?
changes maintenance
costs

What will be the costs of
How many change maintaining this system

requests canbe over the next year?
expected?

(hange Prediction

s Predicting the number of changes requires an
understanding of the relationships between a
system and its environment

s Tightly coupled systems require changes whenever
the environment is changed

s Factors influencing this relationship are
o Number and complexity of system interfaces

o Number of inherently volatile system requirements
o The business processes where the system is used

Complexity Metrics

s Predictions of maintainability can be made by
assessing the complexity of system components

s Studies have shown that most maintenance effort
IS spent on a relatively small number of system
components

s Complexity depends on
o Complexity of control structures

o Complexity of data structures
o Procedure and module size

Process Metrics

s Process measurements may be used to assess
maintainability
o Number of requests for corrective maintenance
o Average time required for impact analysis
o Average time taken to implement a change request
o Number of outstanding change requests

s |f any or all of these is increasing, this may indicate
a decline in maintainability

Architectural Evolution

s There is a need to convert many legacy systems
from a centralised architecture to a client-server

architecture

s Change drivers
o Hardware costs. Servers are cheaper than mainframes

o User interface expectations. Users expect graphical user
interfaces (CLI=>GUI)

o Distributed access to systems. Users wish to access the
system from different, geographically separated,
computers

Distribution Factors

Factor Description

Business importance Returns on the investment of distributing a legacy system depend on its
importance to the business and how long it will remain important. If
distribution provides more efficient support for stable business
processes then it is more likely to be a cost-effective evolution strategy.

System age The older the system the more difficult it will be to modify its
architecture because previous changes will have degraded the structure of
the system.

System structure The more modular the system, the easier it will be to change the

architecture. If the application logic, the data management and the user
interface of the system are closely intertwined, it will be difficult to
separate functions for migration.
Hardware procurement Application distribution may be necessary if there is company policy to
policies replace expensive mainframe computers with cheaper servers. .

Legacy System Structure

s |deally, for distribution, there should be a clear
separation between the user interface, the system
services and the system data management

s [N practice, these are usually intermingled in older
legacy systems

Legacy System Structures

User interface
User interface

Services |—I \

-

Services —_—
L

|\

Database

Database

Ideal model for distribution Real legacy systems

UI Migration Strategies

St ra tegy

A dva nt age s

Disadva nt age s

Imp lem enta tion
usingth e window
manage m ent

Sys tem

Access to all UIf unc tion s sono
real restrictionson Ul de sign

Be tter Ul pe rf orm ance

Platformdep endent
Maybe moredi fli cu t toach iew

in terfacecon sistency

Imp lem enta tion
usinga web

brow ser

Platformind ependen t

Lo wertr an ingco sts duetou ser
familiarityw ithth e WWW
Easier to ach event erface

con sistency

Poten tiallypoo rer Ul

pe rform arc e

Int erf ace des igni s con strained
byth efacilities provid edbyweb

browsers

Key Points

s The costs of software change usually exceed the
costs of software development

s Factors influencing maintenance costs include
staff stability, the nature of the development
contract, skill shortages and degraded system
structure

so Architectural evolution is concerned with evolving
centralised to distributed architectures

s A distributed user interface can be supported using
screen management middleware

