
 
SWEN 256 – Software Process & Project Management

 Agile Methods

o cowboys and hackers

o undisciplined

o low quality

 Plan Driven Methods

o process worship

o document laden

o excessive discipline

 It’s not that black and white. The process spectrum spans
a range of gray.

Agile

 Embrace Change

 Frequent Delivery

 Simple Design

 Refactoring

 Pair Programming

 Retrospective

 Tacit Knowledge

 Test-Driven Development
(TDD)

Plan-Driven

 Process Improvement

 Process Capability

 Organizational Maturity

 Process Group

 Risk Management

 Verification (building the
product right)

 Validation (building the
right product)

 System Architecture

Both try to minimize risk, but in drastically different ways

 Characteristics

o Systematic engineering approach

o Completeness of documentation

o Thorough verification - traceability

o Traditionally waterfall, but more incremental and evolutionary

processes are the norm.

 Examples

o Cleanroom (mathematically driven)

o PSP/TSP (Humphrey, SEI)

 Characteristics

o Short, iterative cycles

o Incremental delivery

o Evolutionary work artifacts (test,design,code)

o Active customer involvement

o Dynamic application domains (requirements)

 Examples

o eXtreme Programming (XP) – (Beck)

o Crystal family (Cockburn)

o Scrum (Schwaber)

o Feature-Driven Development (Coad)

from “Balancing Agility & Discipline” (Boehm & Turner)

Hackers Inch-

Pebble

XP

Agile Methodologies

Plan Driven

Methodologies

Scrum DSDM

Crystal

Lean

Feature Driven Design

RUP

SW-

CMM

PSP

Cleanroom
TSP

Less Agile More Agile

 In the late 1990's several methodologies began to get increasing public
attention. All emphasized:

o close collaboration between the programmer team and business
experts

o face-to-face communication (as more efficient than written
documentation)

o frequent delivery of new deployable business value

o tight, self-organizing teams

o ways to craft the code and the team such that the inevitable
requirements churn was not a crisis.

 2001 : Workshop in Snowbird, Utah, Practitioners of these
methodologies met to figure out just what it was they had in common.
They picked the word "agile" for an umbrella term and crafted the

o Manifesto for Agile Software Development,

http://www.agilemanifesto.org/

Statement of shared development values:

 Individuals and Interactions – over process and tools

 Working software - over comprehensive documentation

 Customer collaboration - over contract negotiation

 Responding to change - over following a plan

“That is, while there is value in the items on the right, we

value the items on the left more. “

We follow these principles:

 Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

 Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

 Business people and developers must work together daily throughout the
project.

 Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

We follow these principles (continued):

 Working software is the primary measure of progress.

 Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity--the art of maximizing the amount of work not done--is essential.

 The best architectures, requirements, and designs emerge from self-organizing
teams.

 At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

 Project follows a waterfall process (plan driven)

 Teams produce artifacts at each phase of the life-cycle in a
sequential manner.

 Significant upfront design effort

 Implementation delayed until later stages of the project

 Testing deferred until coding complete

 Teams make final presentation to the customer

 Teams participate in postmortem session

Start Project End Project

Requirements

Planning

Analysis/Design

Implementation

Test

Release

Project Plan

Estimates

Schedule

Risk Mgmt

Require Doc

Design Document

Use Case Diagrams

Interaction Diagrams

Class Diagrams

GUI Prototypes

Code!

Inspections

Test Plan

Test Results

Post Mortem

Code!

 Lightweight applications/heavyweight process

 Document intensive (perceived)

 Less flexible design

 Big bang approach to coding/integration

 Testing short-shifted

 One-shot delivery opportunity

 Lack of opportunity for process improvement

 Incremental development – several releases

 Planning based on user stories

 Each iteration touches all life-cycle activities

 Testing – unit testing for deliverables

 Testing – acceptance tests for each release

 Flexible Design – evolution vs. big upfront effort

 Reflection after each release cycle

 Several technical and customer focused presentation

opportunities

Start Project End Project

Planning

User Stories

Test Plan

Implement

Test

Demo/Deliver

Reflect

Release 1

Release 2

Final

Release

 Team Skills

o Collaborative Development

o Reflections (process improvement)

 User Stories

o Requirements elicitation

o Planning – scope & composition

 Evolutionary Design

o Opportunity to make mistakes

 Continuous Integration

o Code (small booms vs big bang)

 Testing

o Dispels notion of testing as an end of cycle activity

 Communication

o Interacting with customer / team members

 Agile Themes:

o Lightweight disciplined processes

o Feature / Customer Focused

o Small teams

o Short delivery cycles

 User stories drive planning and requirements in a manageable work

units

o Customer perspective

o Risk management

 Frequent delivery of working software

o Process reflection opportunities

o Implementation refactoring

o Positive feedback to team

 Testing Focus

o Test early and often

o Change in attitude towards testing

o Agile Software Development Portal:

 agile.csc.ncsu.edu/

o Agile Alliance – www.agilealliance.com

o www.extremeprogramming.org/

o Laurie Williams – North Carolina State:

collaboration.csc.ncsu.edu/laurie/index.html

http://agile.csc.ncsu.edu/
http://www.agilealliance.com/
http://www.extremeprogramming.org/
http://collaboration.csc.ncsu.edu/laurie/index.html

 

