

SWEN 256 – Software Process & Project Management

 Agile Methods

o cowboys and hackers

o undisciplined

o low quality

 Plan Driven Methods

o process worship

o document laden

o excessive discipline

 It’s not that black and white. The process spectrum spans
a range of gray.

Agile

 Embrace Change

 Frequent Delivery

 Simple Design

 Refactoring

 Pair Programming

 Retrospective

 Tacit Knowledge

 Test-Driven Development
(TDD)

Plan-Driven

 Process Improvement

 Process Capability

 Organizational Maturity

 Process Group

 Risk Management

 Verification (building the
product right)

 Validation (building the
right product)

 System Architecture

Both try to minimize risk, but in drastically different ways

 Characteristics

o Systematic engineering approach

o Completeness of documentation

o Thorough verification - traceability

o Traditionally waterfall, but more incremental and evolutionary

processes are the norm.

 Examples

o Cleanroom (mathematically driven)

o PSP/TSP (Humphrey, SEI)

 Characteristics

o Short, iterative cycles

o Incremental delivery

o Evolutionary work artifacts (test,design,code)

o Active customer involvement

o Dynamic application domains (requirements)

 Examples

o eXtreme Programming (XP) – (Beck)

o Crystal family (Cockburn)

o Scrum (Schwaber)

o Feature-Driven Development (Coad)

from “Balancing Agility & Discipline” (Boehm & Turner)

Hackers Inch-

Pebble

XP

Agile Methodologies

Plan Driven

Methodologies

Scrum DSDM

Crystal

Lean

Feature Driven Design

RUP

SW-

CMM

PSP

Cleanroom
TSP

Less Agile More Agile

 In the late 1990's several methodologies began to get increasing public
attention. All emphasized:

o close collaboration between the programmer team and business
experts

o face-to-face communication (as more efficient than written
documentation)

o frequent delivery of new deployable business value

o tight, self-organizing teams

o ways to craft the code and the team such that the inevitable
requirements churn was not a crisis.

 2001 : Workshop in Snowbird, Utah, Practitioners of these
methodologies met to figure out just what it was they had in common.
They picked the word "agile" for an umbrella term and crafted the

o Manifesto for Agile Software Development,

http://www.agilemanifesto.org/

Statement of shared development values:

 Individuals and Interactions – over process and tools

 Working software - over comprehensive documentation

 Customer collaboration - over contract negotiation

 Responding to change - over following a plan

“That is, while there is value in the items on the right, we

value the items on the left more. “

We follow these principles:

 Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

 Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

 Business people and developers must work together daily throughout the
project.

 Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

We follow these principles (continued):

 Working software is the primary measure of progress.

 Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity--the art of maximizing the amount of work not done--is essential.

 The best architectures, requirements, and designs emerge from self-organizing
teams.

 At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

 Project follows a waterfall process (plan driven)

 Teams produce artifacts at each phase of the life-cycle in a
sequential manner.

 Significant upfront design effort

 Implementation delayed until later stages of the project

 Testing deferred until coding complete

 Teams make final presentation to the customer

 Teams participate in postmortem session

Start Project End Project

Requirements

Planning

Analysis/Design

Implementation

Test

Release

Project Plan

Estimates

Schedule

Risk Mgmt

Require Doc

Design Document

Use Case Diagrams

Interaction Diagrams

Class Diagrams

GUI Prototypes

Code!

Inspections

Test Plan

Test Results

Post Mortem

Code!

 Lightweight applications/heavyweight process

 Document intensive (perceived)

 Less flexible design

 Big bang approach to coding/integration

 Testing short-shifted

 One-shot delivery opportunity

 Lack of opportunity for process improvement

 Incremental development – several releases

 Planning based on user stories

 Each iteration touches all life-cycle activities

 Testing – unit testing for deliverables

 Testing – acceptance tests for each release

 Flexible Design – evolution vs. big upfront effort

 Reflection after each release cycle

 Several technical and customer focused presentation

opportunities

Start Project End Project

Planning

User Stories

Test Plan

Implement

Test

Demo/Deliver

Reflect

Release 1

Release 2

Final

Release

 Team Skills

o Collaborative Development

o Reflections (process improvement)

 User Stories

o Requirements elicitation

o Planning – scope & composition

 Evolutionary Design

o Opportunity to make mistakes

 Continuous Integration

o Code (small booms vs big bang)

 Testing

o Dispels notion of testing as an end of cycle activity

 Communication

o Interacting with customer / team members

 Agile Themes:

o Lightweight disciplined processes

o Feature / Customer Focused

o Small teams

o Short delivery cycles

 User stories drive planning and requirements in a manageable work

units

o Customer perspective

o Risk management

 Frequent delivery of working software

o Process reflection opportunities

o Implementation refactoring

o Positive feedback to team

 Testing Focus

o Test early and often

o Change in attitude towards testing

o Agile Software Development Portal:

 agile.csc.ncsu.edu/

o Agile Alliance – www.agilealliance.com

o www.extremeprogramming.org/

o Laurie Williams – North Carolina State:

collaboration.csc.ncsu.edu/laurie/index.html

http://agile.csc.ncsu.edu/
http://www.agilealliance.com/
http://www.extremeprogramming.org/
http://collaboration.csc.ncsu.edu/laurie/index.html

