
 
SWEN 256 – Software Process & Project Management

 “Predictions are hard, especially about the future”

Yogi Berra

 Two Types of estimates: Lucky or Lousy

2

 Created, used or refined during

o Strategic planning

o Feasibility study and/or SOW

o Proposals

o Vendor and sub-contractor evaluation

o Project planning (iteratively)

 Basic process

1) Estimate the size of the product

2) Estimate the effort (man-months)

3) Estimate the schedule

o NOTE: Not all of these steps are always explicitly performed

3

 Remember, an “exact estimate” is an oxymoron

 Estimate how long will it take you to get home from class
today-

o On what basis did you do that?

o Experience right?

o Likely as an “average” probability

o For most software projects there is no such ‘average’

4

 Target vs. Committed Dates

• Target: Proposed by business or marketing

• Do not commit to this too soon!

• Committed dates: Team agrees to this

5

6

 Expert Judgment

 Top-down

 Bottom-up

 Analogy

 Priced to Win (request for quote – RFQ)

 Parametric or Algorithmic Method

o Using formulas and equations

7

 Use somebody who has recent experience on a similar

project

 You get a “guesstimate”

 Accuracy depends on their ‘real’ expertise

 Comparable application(s) must be accurately chosen

8

 Based on overall characteristics of project

o Some of the others can be “types” of top-down (Analogy,

Expert Judgment, and Algorithmic methods)

 Advantages

o Easy to calculate

o Effective early on (like initial cost estimates)

 Disadvantages

o Some models are questionable or may not fit

o Less accurate because it doesn’t look at details

9

 Create WBS – Work Breakdown Structure, identify

individual tasks to be done.

 Add from the bottom-up

 Advantages

o Works well if activities well understood

 Disadvantages

o Specific activities not always known

o More time consuming

10

 Use past project

o Must be sufficiently similar (technology, type,
organization)

o Find comparable attributes (ex: # of inputs/outputs)

 Advantages

o Based on actual historical data

 Disadvantages

o Difficulty ‘matching’ project types

o Prior data may have been mis-measured

o How to measure differences – no two exactly same

11

 Lines of Code (LOC)

 Function points

 Feature points or object points

 LOC and function points most common

o (of the algorithmic approaches)

 Majority of projects use none of the above

12

 Group consensus approach

 Rand Corp. used orig. Delphi approach in the 1940’s to predict future
technologies

 Present experts with a problem and response form

 Conduct group discussion, collect anonymous opinions, then feedback

 Conduct another discussion & iterate until consensus

 Advantages

o Easy, inexpensive, utilizes expertise of several people

o Does not require historical data

 Disadvantages

o Difficult to repeat

o May fail to reach consensus, reach wrong one, or all may have same
bias

13

 LOC Advantages

o Commonly understood metric

o Permits specific comparison

o Actuals easily measured

 LOC Disadvantages

o Difficult to estimate early in cycle

o Counts vary by language

o Many costs not considered (ex: requirements)

o Programmers may be rewarded based on this

• Can use: # defects/# LOC

o Code generators produce excess code

14

 How do you know how many in advance?

 What about different languages?

 What about programmer style?

 Stat: avg. programmer productivity: 3,000 LOC/yr

 Most algorithmic approaches are more effective

after requirements (or have to be after)

15

 Software size measured by number & complexity of

functions it performs

 More methodical than LOC counts

 House analogy

o House’s Square Feet ~= Software LOC

o # Bedrooms & Baths ~= Function points

o Former is size only, latter is size & function

 Six basic steps

16

 Does not come for free

 Code types: New, Modified, Reused

 If code is more than 50% modified, it’s “new”

 Reuse factors have wide range

o Reused code takes 30% effort of new

o Modified is 60% of new

 Integration effort with reused code almost as

expensive as with new code

17

 Each user scenario is considered separately

 The scenario is decomposed into a set of engineering
tasks

 Each task is estimated separately

o May use historical data, empirical model, or experience

o Scenario volume can be estimated (LOC, FP, use-case count, etc.)

 Total scenario estimate computed

o Sum estimates for each task

o Translate volume estimate to effort using historical data

 The effort estimates for all scenarios in the increment are
summed to get an increment estimate

18

 Now that you know the “size”, determine the

“effort” needed to build it

 Various models: empirical, mathematical,

subjective

 Expressed in units of duration

o Man-months (or ‘staff-months’)

19

 Barry Boehm – 1980’s

 COnstructive COst MOdel

 Input – LOC, Output - Person Months

 Allows for the type of application, size, and “Cost
Drivers”

 Cost drivers using High/Med/Low & include

o Motivation, Ability of team, Application experience, etc.

 Biggest weakness?

o Requires input of a product size estimate in LOC

20

 Quality estimations needed early but information is limited

 Precise estimation data available at end but not needed

o Or is it? What about the next project?

 Best estimates are based on past experience

 Politics of estimation:

o You may anticipate a “cut” by upper management

 For many software projects there is little or none

o Technologies change

o Historical data unavailable

o Wide variance in project experiences/types

o Subjective nature of software estimation

21

 Over estimation issues

o The project will not be funded

• Conservative estimates guaranteeing 100% success may mean funding
probability of zero.

o Parkinson’s Law: Work expands to take the time allowed

o Danger of feature and scope creep

o Be aware of “double-padding”: team member + manager

 Under estimation issues

o Quality issues (short changing key phases like testing)

o Inability to meet deadlines

o Morale and other team motivation issues

• See “Death March” by Ed Yordan

22

 Are they ‘Real Deadlines’?

o Tied to an external event

o Have to be met for project to be a success

o Ex: end of financial year, contractual deadline, Y2K

 Or ‘Artificial Deadlines’?

o Set by arbitrary authority

o May have some flexibility (if pushed)

23

 How you present the estimation can have huge impact

 Techniques
• Plus-or-minus qualifiers

• 6 months +/-1 month

• Ranges
• 6-8 months

• Risk Quantification
• +/- with added information

• +1 month of new tools not working as expected

• -2 weeks for less delay in hiring new developers

• Cases
• Best / Planned / Current / Worst cases

• Coarse Dates
• Q3 02

• Confidence Factors
• April 1 – 10% probability, July 1 – 50%, etc.

24

 For Time or Cost Estimates:

o Aggregation into larger units (Work Packages, Control Accounts, etc.)

o Perform Risk Analysis to calculate Contingency Reserves (Controlled

by PM)

o Add Management Reserves: Set aside to cover unforeseen risks or

changes (Total company funds available – requires Change Control

activities to access)

Activity Activity + Activity +

Work Package + Work Package + Work Package

Control Account + Control Account + Control Account

Project Estimate + Contingency Reserves

Cost Baseline + Management Reserves

Cost Budget

 Estimate iteratively!

o Process of gradual refinement

o Make your best estimates at each planning stage

o Refine estimates and adjust plans iteratively

o Plans and decisions can be refined in response

o Balance: too many revisions vs. too few

26

 Account for resource experience or skill

o Up to a point

o Often needed more on the “low” end, such as for a new

or junior person

 Allow for “non-project” time & common tasks

o Meetings, phone calls, web surfing, sick days

 There are commercial ‘estimation tools’ available

o They typically require configuration based on past data

27

 Remember: “manage expectations”

 Parkinson’s Law

o “Work expands to fill the time available”

 The Student Syndrome

o Procrastination until the last minute (cram)

28

 

