
1

Introduction to
Agile Software Development

2

Word Association

Write down the first word or phrase that pops in
your head when you hear:

• Extreme Programming (XP)

• Team (or Personal) Software Process
(TSP/PSP)

• Plan-driven software development

• Agile software development

2

3

Process Methodology Myths

� Agile Methods
• cowboys and hackers
• undisciplined
• low quality

� Plan Driven Methods
• process worship
• document laden
• excessive discipline

� It’s not that black and white. The process
spectrum spans a range of gray.

4

Important Concepts

Plan-Driven
• Process Improvement
• Process Capability
• Organizational Maturity
• Process Group
• Risk Management
• Verification (building

the product right)
• Validation (building the

right product)
• System Architecture

Agile
• Embrace Change
• Frequent Delivery
• Simple Design
• Refactoring
• Pair Programming
• Retrospective
• Tacit Knowledge
• Test-Driven

Development (TDD)

3

5

Plan-Driven Approach

Characteristics
• Systematic engineering approach
• Completeness of documentation
• Thorough verification - traceability
• Traditionally waterfall, but more incremental

and evolutionary processes are the norm.

Examples
• Cleanroom (mathematically driven)
• PSP/TSP (Humphrey, SEI)
• SW-CMM (process improvement framework)

6

Agile Approach

Characteristics
• Short, iterative cycles
• Incremental delivery
• Evolutionary work artifacts (test,design,code)
• Active customer involvement
• Dynamic application domains (requirements)

Examples
• eXtreme Programming (XP) – (Beck)
• Crystal family (Cockburn)
• Scrum (Schwaber)
• Feature-Driven Development (Coad)

4

7

The Process Methodology Spectrum

Hackers Inch-
Pebble

XP

Agile Methodologies

Plan Driven
Methodologies

Scrum DSDM

Crystal
Lean

Feature Driven Design

RUP

SW-
CMM

PSP

CleanroomTSP

from “Balancing Agility & Discipline” (Boehm & Turne r)

Less AgileMore Agile

8

What Is Agile Software Development?

� In the late 1990's several methodologies began to get
increasing public attention. All emphasized:

• close collaboration between the programmer team and
business experts

• face-to-face communication (as more efficient than written
documentation)

• frequent delivery of new deployable business value
• tight, self-organizing teams
• ways to craft the code and the team such that the

inevitable requirements churn was not a crisis.

�2001 : Workshop in Snowbird, Utah, Practitioners of these
methodologies met to figure out just what it was they had in
common. They picked the word "agile" for an umbrella term
and crafted the

• Manifesto for Agile Software Development,

5

9

Manifesto for Agile Software Development

Statement of shared development values:

� Individuals and Interactions – over process and tools
�Working software - over comprehensive documentation
�Customer collaboration - over contract negotiation
�Responding to change - over following a plan

“That is, while there is value in the items on the right , we
value the items on the left more . “

10

What traditional developers heard

Statement of shared development values:

� Individuals and Interactions = NO process
�Working software = NO documentation
�Customer collaboration = NO contracts
�Responding to change = NOT following a plan

6

11

Principles behind the Agile Manifesto

We follow these principles:

� Our highest priority is to satisfy the customer thr ough early and
continuous delivery of valuable software.

� Welcome changing requirements, even late in develop ment. Agile
processes harness change for the customer's competi tive
advantage.

� Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

� Business people and developers must work together d aily
throughout the project.

� Build projects around motivated individuals. Give t hem the
environment and support they need, and trust them t o get the job
done.

� The most efficient and effective method of conveyin g information to
and within a development team is face-to-face conve rsation.

12

Principles behind the Agile Manifesto

We follow these principles (continued):

� Working software is the primary measure of progress .

� Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

� Continuous attention to technical excellence and go od design
enhances agility.

� Simplicity--the art of maximizing the amount of work not done--is
essential.

� The best architectures, requirements, and designs e merge from
self-organizing teams.

� At regular intervals, the team reflects on how to b ecome more
effective, then tunes and adjusts its behavior acco rdingly.

7

13

Traditional Approach

� Project follows a waterfall process (plan
driven)

� Teams produce artifacts at each phase of the
life-cycle in a sequential manner.

� Significant upfront design effort

� Implementation delayed until later stages of
the project

� Testing deferred until coding complete

� Teams make final presentation to the customer

� Teams participate in postmortem session

14

Traditional Project Approach

Start End

Requirements

Planning

Analysis/Design

Implementation

Test

Demo

�Project Plan

�Estimates

�Schedule

�Risk Mgmt

�Require Doc

�Design Document

�Use Case Diagrams

�Interaction Diagrams

�Class Diagrams

�GUI Prototypes

Code!

�Inspections

�Test Plan

�Test Results

�Post Mortem

Code!

8

15

Traditional Challenges

� Lightweight application/heavyweight process

� Document intensive (perceived)

� Less flexible design

� Big bang approach to coding/integration

� Testing short-shifted

� One-shot presentation opportunity

� Lack of opportunity for process improvement

� Prone to “Analysis-Paralaysis”

• “Ready, Aim, Aim, Aim, …”

16

Four Project Variables

�Time – duration of the project
�Quality – the requirements for ‘correctness’
�Resources – personnel, equipment, etc.
�Scope – what is to be done; the features to be

implemented

�Pick three, any three . . .

9

17

Planning

“The plan is nothing; the
planning is everything”

� Dwight Eisenhower

�Allied supreme
commander during World
War II

�34th President of United
States (1953-61)

18

Where are the risks?

“Getting Readu for Agile Methods With Care”, Barry B oehm – IEEE Computer, 2002

10

19

Agile RE Profile

“Getting Readu for Agile Methods With Care”, Barry B oehm – IEEE Computer, 2002

20

Plan-Driven RE Profile

“Getting Readu for Agile Methods With Care”, Barry B oehm – IEEE Computer, 2002

11

21

Agile Characteristics

� Incremental development – several releases

� Planning based on user stories

� Each iteration touches all life-cycle activities

� Testing – unit testing for deliverables

� Testing – acceptance tests for each release

� Flexible Design – evolution vs. big upfront
effort

� Reflection after each release cycle

� Several technical and customer focused
presentation opportunities

22

Key Agile Contributions

� Team Skills
• Collaborative Development
• Reflections (process improvement)

� User Stories
• Requirements elicitation
• Planning – scope & composition

� Evolutionary Design
• Opportunity to make mistakes

� Continuous Integration
• Code (small booms vs big bang)

� Testing
• Dispels notion of testing as an end of cycle activi ty

� Communication
• Interacting with customer / team members

12

23

Agile Software Development

� Agile Themes:
• Lightweight disciplined processes
• Feature / Customer Focused
• Small teams
• Short delivery cycles

� Popular Agile Methodologies:
• XP (eXtreme Programming)
• Crystal Family
• Adaptive Software Process
• Scrum

24

Characteristics of Agile Methodologies

� Deliver working software frequently

� Incremental development cycles – release plan
based on user stories.

� Evolutionary approach to design – design what
you need for this release cycle

� Test – Test – Test (Unit & Acceptance)

� Customer participation

� Lightweight documentation

� Reflect at regular intervals – tune and adjust

13

25

Agile Benefits

�User stories drive planning and requirements in a
manageable work units

• Customer perspective

• Risk management

�Frequent delivery of working software

• Process reflection opportunities

• Implementation refactoring

• Positive feedback to team

Testing Focus
• Test early and often

• Change in attitude towards testing

26

Transitioning to Agile
�Agile is not a “Silver Bullet” that will cure all your

development woes. It will however brightly illumina te your
opportunities.

�Where are the opportunities for improvement in our
current process? How does Agile address those issue s?

�Trust, Transparency, Patience

� Individual Opportunity - “Generalizing Specialists”

�The adoption of Agile is neither completely top-dow n or
bottom-up. It must be a balance of both with a stro ng level
of trust and commitment between all levels of the
organization

14

27

Common Issues

�Typical issues/obstacles that arise include:
• Lack of business ownership and the inability

to make decisions
• Limited business buy-in into the concept of

Agile
• Team communication, individual skills, and

team fit
• Lack of trust in the team by the business
• Focus only on Agile development practices

�Agile permeates all levels of the organization

28

15

29

Methodology Distribution

30

Resources

• Agile Software Development Portal:
agile.csc.ncsu.edu/

• Agile Alliance – www.agilealliance.com

• www.extremeprogramming.org/

• Laurie Williams – North Carolina State:
collaboration.csc.ncsu.edu/laurie/index.html

