
J. Scott Hawker/R. Kuehl p. 1
R I T

Software Engineering

Software Architecture Design Example

Using Attribute Driven Design

J. Scott Hawker/R. Kuehl p. 2
R I T

Software Engineering

Garage Door Example

 Design a product line architecture for a garage
door opener integrated with a home information
system

 Raise/lower door via switch, remote, home info
system

 Problem diagnosis from home information system

Garage

Door

Opener

Home

Info Sys

Remote

Sensor/

Actuator
Control

Diagnostics

Control

Control

Alerts

J. Scott Hawker/R. Kuehl p. 3
R I T

Software Engineering

 For new (green field) systems it is the whole
system

 For legacy, what is being added

 After the first iteration what comes next,
element breath or depth?

 Depth if technology risk or resourcing concerns

 Garage door opener is the system

Step 1: Choose a System Element to Design

J. Scott Hawker/R. Kuehl p. 4
R I T

Software Engineering

Step 2: Identify the ASRs
(Architecturally Significant Requirements)

 Start with quality scenarios

 Device and controls differ for various products in
product line

 Product processors differ

 Garage door descent must stop within 0.1 second
after obstacle detection

 Access to opener from home info system for
control and diagnostics with proprietary protocol

J. Scott Hawker/R. Kuehl p. 5
R I T

Software Engineering

Step 2: Identify the ASRs (cont)

 ASRs are a combination of functional
requirements, constraints and quality
attributes

 Prioritize ASRs and select those that will
“drive“ the architecture design

Garage door system:

 Real-time performance

 Modifiability to support the product line

 Interoperability for on-line control and diagnostics

J. Scott Hawker/R. Kuehl p. 6
R I T

Software Engineering

Step 3: Generate a Design Solution

For the Chosen Element

 Goal: establish an overall architecture design
that satisfies architectural drivers

 For each ASR for this element choose a design
solution …

 The patterns, tactics, design principles to
achieve quality attributes

 Watch for QA design tradeoffs between tactics

It’s possible the domain problem may call
for a “custom” architecture pattern

J. Scott Hawker/R. Kuehl p. 7
R I T

Software Engineering

Step 3: Generate a Design Solution (cont)

 Performance

 Concerned with critical computational performance
scheduling and efficiency

 Need tactics to deal with the control of resource
demand and resource management

 Choose “increase resource efficiency” and
“schedule resources”

 Solution - separate critical and non-critical
performance computation

J. Scott Hawker/R. Kuehl p. 8
R I T

Software Engineering

Performance Tactics

J. Scott Hawker/R. Kuehl p. 9
R I T

Software Engineering

Step 3: Generate a Design Solution (cont)

 Modifiability

 Primarily concerned with changes at build time,
not runtime

 Need tactics to support separation of
responsibilities to localize changes

 Increase cohesion, reduce coupling

 Choose “increase semantic coherence”,
“encapsulation”, and “abstract common
services” as our tactics

 Solution - separate responsibilities dealing with the
user interface, communication, and sensors into their
own modules

J. Scott Hawker/R. Kuehl p. 10
R I T

Software Engineering

Modifiability Tactics

Modifiability Tactics

Increase

Cohesion

Reduce

Coupling

Split Module
Encapsulate

Use an

Intermediary

Change

Requests

Changes Made

and Deployed

Reduce Size

of a Module

Increase

Semantic

Coherence

Restrict

Dependencies

Refactor

Abstract Common

Services

Defer

Binding

J. Scott Hawker/R. Kuehl p. 11
R I T

Software Engineering

Pattern for Garage Door Opener

User Interface

Non-Performance-
Critical Computation

Virtual
Machine

Performance-Critical
Computation

Schedule that
Guarantees Deadlines

J. Scott Hawker/R. Kuehl p. 12
R I T

Software Engineering

Step 4: Validate Design and Refine Requirements

Requirements satisfied Done, no more refinement

Requirements not fully satisfied •Defer to the next iteration

•Delegate or distribute

requirement satisfaction to sub-

module elements

Requirements cannot be satisfied

with this design

•Revisit the design - backtrack

•Refine or push back on the

requirement

Test the element design for requirements satisfaction

J. Scott Hawker/R. Kuehl p. 13
R I T

Software Engineering

Step 4: Validate Design and Refine Requirements

(cont)

ASRs Not Met Action

Quality attribute •Apply tactics to address

tradeoff or downside

Functional responsibility •Add responsibilities to

existing module

•Create new module

Constraint •Modify the design

•Relax the constraint

Note: Previous designs become a constraint

J. Scott Hawker/R. Kuehl p. 14
R I T

Software Engineering

Step 5: Repeat Until all ASRs Have Been Satisfied

 If all ASR’s satisfied, done – a workable
architecture

 Or elaborated sufficiently for construction

 (or you run out of time and money)

 Otherwise …

 Repeat step 1 - choose the next (sub)element(s)
to design

 Repeat steps 2-4

 As necessary refine use cases and QA scenarios
as ASRs for the next design iteration

J. Scott Hawker/R. Kuehl p. 15
R I T

Software Engineering

Are the ASR’s Satisfied?

Or is the Design Sufficient?

 Device and controls differ for various products
in product line

 Product processors differ

 Garage door descent must stop within 0.1
second after obstacle detection

 Access to opener from home info system for
control and diagnostics with proprietary protocol

J. Scott Hawker/R. Kuehl p. 16
R I T

Software Engineering

Next Iteration Decomposition

 Define sub-modules, assign functionality

 Two types of virtual machine –
sensors/actuators and communications
modules

 Non-performance critical functional modules –
diagnostics and normal raising/lowering the
door modules

 Obstacle detection and halting the door
functions assigned to performance critical
module

 Connections

J. Scott Hawker/R. Kuehl p. 17
R I T

Software Engineering

Next Iteration Design Decomposition

User Interface

Diagnose

Communication
Virtual Machine

Raising/Lowering
Door

Sensor/Actuator
Virtual Machine

Obstacle
Detection

Scheduler that
Guarantees
Deadlines

