Cognitive Walkthrough

p. 1

Cognitive Walkthrough

- Early design evaluation using low fidelity prototypes
- One or more evaluators inspect the user interface
 - Perform a set of tasks
 - Evaluate understandability and learnability
- Simulate user's problem solving process at each task step in the interaction
- Quantitative data is not collected.

Based on Theory of Exploratory Learning

- The user sets a task goal to be accomplished with the system (for example, "check spelling of this document").
- The user searches the interface for currently available actions (menu items, buttons, command-line inputs, etc.).
- The user selects the action that seems likely to make progress toward the goal.
- The user performs the selected action and evaluates the system's feedback for evidence that progress is being made toward the current goal.

p. 3

CW: How-to

- Select the participants
 - Who will be involved?
 - What are their characteristics?
 - Input: user profiles (knowledge of task domain, UI)
- Select the tasks to be examined
- Select the interfaces (screens) to be evaluated

CW: How-to

- During the walkthrough:
 - Present the task
 - Ask user to perform task.
 - Record observations
 - Accept input from all participants: do not interrupt demo
- After the walkthrough:
 - Analyze observations
 - Make interface changes
 - Plan the next evaluation

CW: How-to

- For each task's walkthrough, evaluate the gulfs of execution and evaluation:
 - Will the correct action be evident to the user?
 - Will they know what to do?
 - Will the user **notice** that the **correct action** is available?
 - Can they find the interface object for the next action?
 - Will the user interpret the response from the action correctly?
 - Does feedback tell users they have made a correct/incorrect action?
 - Will the user know what to do next in response to the previous action?

Thinking Aloud Technique

- Encourage users to continuously "think out loud" as they are using the system
 - I.e., verbalize their thoughts as they use the system
- Easy to learn and perform, feedback direct from the user
 - Applies to all forms of usability testing
- Unnatural, not quantitative
- Want ad hoc feedback, not reasoned responses

Walkthrough Activity

- Conduct a walkthrough for the five tasks (HTA's) for your project;
- From the project team, roles are:

One person may have more than one role

- Expert states what each task is
- Scribe takes notes
- Evaluator acts as the primary user
- Observer watches the evaluator interact with the system
- Volunteers from another team will be the evaluators
- Afterwards, the team discusses possible fixes to identified problems

Walkthrough Activity (cont)

- Volunteer evaluators attempt the tasks, "thinking out loud"
 - What execution action decisions and why?
 - What evaluation interpretations?
 - What uncertainties in actions and interpretation?
 - Are items on the screen affecting your decisions positively or negatively?
 - If you are stuck on a step, ask the evaluators for help
- Team observers/scribes use the walkthrough checklist in myCourses
- Each team submit volunteer checklists and team reflection notes to "Class Room Activity/Cognitive Walkthrough" Dropbox

