Rigorous Evaluation

Analysis and Reporting

Structure is from A Practical Guide to Usability Testing by J. Dumas, J. Redish
Results from Usability Tests

• Quantitative data:
 • Performance data - times, error rates, etc.
 • Subjective ratings, from post test surveys

• Qualitative data:
 • Participant comments from notes, surveys, etc.
 • Test team observations, notes, logs
 • Background data from user profiles, pretest surveys and questionnaires

<table>
<thead>
<tr>
<th>Work Role: User Class</th>
<th>UX Goal</th>
<th>UX Measure</th>
<th>Measuring Instrument</th>
<th>UX Metric</th>
<th>Baseline Level</th>
<th>Target Level</th>
<th>Observed Results</th>
<th>Meet Target?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticket buyer: Casual new user, for occasional personal use</td>
<td>Walk-up ease of use</td>
<td>Initial user performance</td>
<td>BT1: Buy special event ticket</td>
<td>Average time on task</td>
<td>3 min as measured at the kiosk</td>
<td>2.5 min</td>
<td>3.5 min</td>
<td>No</td>
</tr>
<tr>
<td>Ticket buyer: Casual new user, for occasional personal use</td>
<td>Walk-up ease of use for new user</td>
<td>Initial user performance</td>
<td>BT2: Buy movie ticket</td>
<td>Average number of errors</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Ticket buyer: Casual new user, for occasional personal use</td>
<td>Initial customer satisfaction</td>
<td>First impression</td>
<td>Questions Q1–Q10 in questionnaire XYZ</td>
<td>Average rating across users and across questions</td>
<td>7.5/10</td>
<td>8/10</td>
<td>7.5</td>
<td>No</td>
</tr>
</tbody>
</table>
Summarize and Analyze Test Data

• Qualitative data …
 • For survey multiple choice questions, count responses or average (if large groups)
 • For survey open-questions/comments, interviews, and observations …
 • Identify critical comments
 • Group into meaningful categories (+ or – for a particular task/screen)

• Quantitative data …
 • Tabulate
 • Use statistics for analysis when appropriate
Look for Data Trends/ Surprises

• Examine the quantitative data …
 • Trends or patterns in task completion, error rates, etc.
 • Identify extremes, outliers
• Outliers - what can they tell us, ignore at your peril
 • Non-usability anomaly such as technical problem?
 • Difficulties unique to one participant?
 • Unexpected usage patterns?
• Correlate with qualitative data such as written comments – why?
• If appropriate compare old versus new program versions, different user groups
Examining the Data for Problems

- Have you achieved the usability goals
 - learnable, memorable, efficient, understandable, satisfying …?
- Unanticipated usability problems?
 - Usability concerns that are not addressed in the design
- Have the quantitative criteria that you have set been met or exceeded?
- Was the expected emotional impact observed?
Task and Error Analysis

• What tasks did users have the most problems with (usability goals not met)?
• Conduct error analysis
 • Categorize errors/task by type
 • Requirement or design defect (or bug)
 • % of participants performing successfully within the benchmark time
 • % of participants performing successfully regardless of time (with or without assistance)
 • If low then BIG problems
Prioritize Problems

• Criticality = Severity + Probability

• Severity
 • 4: Unusable – not able/want to use that part of product due to design/implementation
 • 3: Severe – severely limited in ability to use product (hard to workaround)
 • 2: Moderate – can use product in most cases, with moderate workaround
 • 1: Irritant – intermittent issue with easy workaround; cosmetic

• Factor in scope– local to a task (e.g., on screen) versus global to the application (e.g., main menu)
Prioritize Problems (cont.)

- Probability of occurrence

<table>
<thead>
<tr>
<th>Frequency ranking</th>
<th>Estimated frequency of occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Will occur $\geq 90%$ of the time the product is used</td>
</tr>
<tr>
<td>3</td>
<td>Will occur 51–89% of the time</td>
</tr>
<tr>
<td>2</td>
<td>Will occur 11–50% of the time</td>
</tr>
<tr>
<td>1</td>
<td>Will occur $\leq 10%$ of the time</td>
</tr>
</tbody>
</table>

- When done – sort by Criticality (priority)

Statistical Analysis

• Summarize quantitative data to help discover patterns of performance and preference, and detect usability problems
• Descriptive and inferential techniques
Descriptive Statistics

• Describe the properties of a specific data set
• Measures of central tendency (single variable)
 • Frequency distribution (e.g., of errors)
 • Mean (average), median (middle value), mode (most frequent value in a set)
• Measures of spread (single variable)
 • Amount of variance from the mean, standard deviation
• Relationships between pairs of variables
 • Scatterplot
 • Correlation
• Sufficient to make meaningful recommendations for most tests
Using Descriptive Statistics to Summarize Performance Data E.g., Task Completion Times

- Mean time to complete – rough estimate of group as a whole
 - Compare with original benchmark: is it skewed above/below?
- Median time to complete – use if data very skewed
- Range (largest value – smallest value) spread of data
 - If small spread then mean is representative of the group
 - A good measure
- Standard Deviation (SD) is the square root of the variance
 - How much variation or "dispersion" is there from the average (mean or expected value) in a normal distribution
 - If small, then performance is similar, if large, then more analysis is needed
 - Influence by outliers possible, so rerun without them as well
Normal Curve and Standard Deviation

1 SD = 68%

2 SD = 95%

3 SD = 99.7%
Summarizing Performance Data (Cont.)

- Interquartile range (IQR) – another measure of statistical spread
 - Find the three data points (quartiles) that divide the data set into four equal parts, where each part has one quarter of the data
 - Difference between the upper (Q₃) and lower (Q₁) quartile points is the IQR
 - IQR = Q₃ - Q₁ (“middle fifty”)
 - Find outliers - below Q₁ - 1.5(IQR) or above Q₃ + 1.5(IQR)

<table>
<thead>
<tr>
<th>i</th>
<th>x[i]</th>
<th>Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>Q₁</td>
</tr>
<tr>
<td>4</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>109</td>
<td>Q₂ (median)</td>
</tr>
<tr>
<td>7</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>115</td>
<td>Q₃</td>
</tr>
<tr>
<td>10</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>
Correlation

• Allows exploration of the strength of the linear relationship between two continuous variables
• You get two pieces of information; direction and strength of the relationship
 • Direction
 • +, as one variable increases so does the other
 • -, as one variable increases, the other variable decreases
 • Strength
 • Small: .01 to .29 -.01 to -.29
 • Medium: .3 to .49 -.3 to -.49
 • Large: .5 to 1 -.5 to -1
Scatterplots

- Need to visually examine the data points
- Scatterplot – plot (X,Y) data point coordinates on a Cartesian diagram

\[r = .00 \]
\[r = .40 \]
\[r = .99 \]
Errors in Testing

- Sample is not big enough
- The sample is biased
 - You have failed to notice and compensate for factors that can bias the results
- Sloppy measurement of data.
- Outliers were left in when they should have been removed
 - Is an outlier a fluke or a sign of something more serious in the context of a larger data set?
Data Analysis Activity

- See the Excel spreadsheet “Sample Usability Data File” under “Assignments and In-Class Activities” in myCourses
- Follow the directions
- Submit to the Activity dropbox “Data Analysis”
Supplemental Information

Inferential Statistics
Inferential Statistics

• Infer some property or general pattern about a larger data set by studying a statistically significant sample (large enough to obtain repeatable results)
 • In expectation the results will generalize to the larger group
 • Analyze data subject to random variation as a sample from a larger data set

• Techniques:
 • Estimation of descriptive parameters
 • Testing of statistical hypotheses

• Can be complex to use, controversial
 • Keep Inferential Statistics Simple (KISS 2.0)
Statistical Hypothesis Testing

- A method for making decisions about statistical validity of observable results as applied to the broader population
- Based on data samples from experiments or observations
- Statistical hypothesis – (1) a statement about the value of a population parameter (e.g., mean) or (2) a statement about the kind of probability distribution that a certain variable obeys
Establish a Null Hypothesis (H₀)

- The **null hypothesis** H₀ is a simple hypothesis in **contradiction** to what you would like to prove about a data population.
- The **alternative hypothesis** H₁ is the **opposite**
 - what you would like to prove
- For example: I believe the mean age of this class is greater than or equal to 20.7
 - H₀ - the mean age is < 20.7
 - H₁ – the mean age is ≥ 20.7
Does the Statistical Hypothesis Match Reality?

Two types of errors in deciding whether a hypothesis is true or false

- Note: a decision about what you believe to be true or false about the hypothesis, not a proof
- **Type I error** is considered more serious
Null Hypothesis

• Null hypothesis (H₀) – hypothesis stated in such a way that a Type I error occurs if you believe the hypothesis is false and it is true

• In any test of H₀ based on sample observations open to random variation, there is a probability of a Type I error
 • P(Type I Error) = α
 • Called the “significance level”

• Essential idea - limit, to the small value of α, the likelihood of incorrectly reaching the decision to reject H₀ when it is true
 • As a result of experimental error or randomness
How It Works

• Establish \(H_0 \) (and \(H_1 \))
• Establish a relevant test statistic and distribution for the sample (e.g., mean, normal distribution)
• Establish the maximum acceptable probability of a Type I error - the significance level \(\alpha \) (0.05)
• Describe an experiment in terms of …
 • Set of possible values for the test statistic
 • Distribute the test statistic into values for which \(H_0 \) is rejected (critical region) or not
 • Threshold probability of the critical region is \(\alpha \)
• Run the experiment to collect data and compute the test statistic \(p \)
• If \(p > \alpha \) reject \(H_0 \)
Simple Example

- I believe the mean age of this class is \(\geq 20.7 \)
- Establish \(H_0 \)
 - The mean age in this class is less than 20.7 years
- Establish a relevant test statistic and distribution for the sample
 - Mean, assume normal distribution from 17 to 26 of all undergraduate SE students
- Establish the significance level \(\alpha \)
 - 0.05 by convention
- Distribute the test statistic into values for which \(H_0 \) is rejected (critical region)
 - Let’s say 19 and above
 - Run the test with a sample size of 10, compute the mean \(\mu \) and the probability \(p \) of that mean value occurring from a sample size of 10 in the general population
- If \(p > \alpha \), reject \(H_0 \)