Information Visualization in HCl

SWEN-444
Definitions

• **Visualize:**
 – To form a **mental model** or mental image of something
 – To **make something visible to the mind** or imagination

• **Visualization:**
 – **Human activity**, not per se with computers
 – Visual, Auditory or other **sensory modalities**
 – Creation of **visual images** in aid of understanding of **complex**, data rich, **representations of data**
Information Visualization

• **Pre-attentive processing**
 – *Unconscious* accumulation of information from the environment
 – Information that “*stands out*” is selected for attentive (*conscious*) processing
 – Why does some information “stand out”?
 • Not exactly sure!
 • But it has something to do with the stimulus itself, and the person's current intentions or goals
Weber's law

• “just noticeable difference”
\[
\frac{\Delta I}{I} = k
\]

• I – original intensity of the stimulus
• Change in I is the minimum difference required for it to be perceived (jnd)
• K constant
What is Information Visualization?

• Information visualization: “the use of interactive visual representations of abstract data to amplify cognition” (Ware, 2008)

• Abstract data include both numerical and non-numerical data
 – Stock prices, social relationships, patient records

• Typical concerns: discovery of patterns, trends, clusters, outliers and gaps in data

• Design goal: be more than aesthetically pleasing, show measurable usability benefits across different platforms and users
Information Visualization

- Data, dimensionality of the data
- Presentation of the data
- Processing of the data
- Interaction with the data
- Dynamical view updating
Information Visualization Flow

From de Heer et al, CHI 2005
HCI: disaster story

• 1988:
• Iran Air Flight 655 shot down by USS Vincennes
• F-14?? - 290 casualties
• Conclusion: ‘Aegis had provided accurate data. The crew had misinterpreted it.’
• Different radar screens displayed different aspects of airplane
• Correlating information was difficult
• Vital data cluttered by trivial data
Data Type by Task Taxonomy

Data Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D Linear</td>
<td>Document Lens, Seesoft™, Information Mural, TextArc</td>
</tr>
<tr>
<td>2D Map</td>
<td>Geographic information systems, ESRI ArcInfo™, ThemeView™, newspaper layout, self-organizing maps</td>
</tr>
<tr>
<td>3D World</td>
<td>Desktops, WebBook™, VRML™, Web3D™, architecture, computer-assisted design, medicine, molecules</td>
</tr>
<tr>
<td>Multidimensional</td>
<td>Parallel coordinates, scattergram matrices, hierarchical clustering, Spotfire®, Tableau®, GGobi®, DataDesk®, TableLens®, InfoZoom®</td>
</tr>
<tr>
<td>Temporal</td>
<td>DataMontage, Palantir, Project Managers, LifeLines, TimeSearcher</td>
</tr>
<tr>
<td>Tree</td>
<td>Outliners, degree-of-interest trees, cone/cam trees, hyperbolic trees, SpaceTree, treemaps</td>
</tr>
<tr>
<td>Network</td>
<td>NetMap™, netViz™, Pajek, JUNG, UCINet, NetDraw, TouchGraph, SocialAction, NodeXL</td>
</tr>
</tbody>
</table>

Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Gain an overview of the entire collection</td>
</tr>
<tr>
<td>Zoom</td>
<td>Zoom in on items of interest</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter out uninteresting items</td>
</tr>
<tr>
<td>Details-on-demand</td>
<td>Select an item or group and get details when needed</td>
</tr>
<tr>
<td>Relate</td>
<td>View relationships among items</td>
</tr>
<tr>
<td>History</td>
<td>Keep a history of actions to support undo, replay, and progressive refinement</td>
</tr>
<tr>
<td>Extract</td>
<td>Allow extraction of subcollections and of the query parameters</td>
</tr>
</tbody>
</table>
Data Type by Task Taxonomy: 1D Linear Data

• Items which can be organized sequentially e.g. text document, list of names
• Design issues:
 – Colors, sizes, layout
 – Scrolling, selection methods
• Example user tasks: check which items have some required attribute
Data Type by Task Taxonomy: 2D Map Data

- **Items make up some part of the 2D area**
 - Not necessarily rectangular, e.g. Lake on Google Map
 - e.g. Geographic map, floor plans
- **Example user tasks:** finding items, finding paths between items
Data Type by Task Taxonomy: 3D World Data

- Items with **complex relationships** with other items
 - e.g. Volume, temperature, density
 - e.g. Medical imaging, architectural drawing, scientific simulations
- Design issues: position, orientation and navigation for viewing 3D application
- Example user tasks: temperature, density
Data Type by Task Taxonomy: Multidimensional Data

- Items with \textbf{n attributes in n-dimensional space}
- Relational database contents can be treated this way
- Interface may allow user to view 2 dimensions at a time
Data Type by Task Taxonomy: Temporal Data

- Very close idea to 1D **sequential data**, but warrant a distinct data type in the taxonomy as **temporal data** is so common – e.g. Stock market data, weather
- Items have a beginning and end time, may overlap in time
- Example user tasks: finding events during a time period, searching for periodical behavior
Data Type by Task Taxonomy: Temporal Data (cont.)
Data Type by Task Taxonomy: Tree Data

- Non-root items have a link to a parent item. Items, links can have multiple attributes e.g. Windows file explorer.
- Example user tasks: how many items are children of a node, how deep or shallow is the graph.
Data Type by Task Taxonomy: Tree Data (cont.)
Data Type by Task Taxonomy: Network Data

- Items linked to arbitrary number of other items
- Example user task: shortest path, least costly path
- How to visualize, layout the network?
The seven basic tasks

1. **Overview**: users can gain an overview of the entire collection
2. **Zoom**: users can zoom in on items of interest
3. **Filter**: users can filter out uninteresting items
4. **Details-on-demand**: users can select an item or group to get details
5. **Relate**: users can relate items or groups within the collection
6. **History**: users can keep a history of actions to support undo, replay, and progressive refinement
7. **Extract**: allow user to “save”, publish, examine extracted items
Challenges for Information Visualization

• **Importing** and **cleaning data**
• Combining visual representations with **textual labels**: How to put on text labels (e.g. on a map) without covering what you wish to display?
• **Finding related information**: Proper judgment often requires looking at data derived from multiple sources
• **Viewing large volumes of data**
• **Integrating data mining**
• **Integrating with analytical reasoning techniques**: Use data to support or disclaim hypotheses
• **Collaborating** with others
• **Achieving universal usability**: Text, tactile or sonic representations?
• **Evaluation**
Challenges for Information Visualization

• Goal is to separate the “signal (information) from the noise (data)”
• Too much versus too little information
• Visualizations pass the eyeball test
• Minimalism – emphasize the data rather than the scaffolding
 – Avoid unnecessary and busy graphics
 – Readable size, legible
 – Appropriate use of color
 – Appropriate scaling, alignment, symmetry
Exercise: A Record Year for Auto Recalls

In discussion groups please answer the following questions:

• What is the data shown in this visualization?
• What questions does this visualization answer?
• What do you think about the use of animation?
• Is the visualization easy to understand?
• Can you read the data from the visualization?
• What is the visualization data type? What tasks can be performed?
• Why do you like / dislike this visualization?
• Can you suggest any improvements? How would you redesign it?

References

• Cuffe, Kirkham, Dent, and Wilson, Data Visualization:The signal and the noise, IEEE Potentials July/August 2018