Information Visualization in HCI

SWEN-444

Definitions

- Visualize:
 - -To form a **mental model** or mental image of something
 - -To make something visible to the mind or imagination
- Visualization:
 - -Human activity, not per se with computers
 - -Visual, Auditory or other sensory modalities
 - -Creation of **visual images** in aid of understanding of **complex**, data rich, **representations of data**

Information Visualization

- Pre-attentive processing
 - -Unconscious accumulation of information from the environment
 - Information that "stands out" is selected for attentive (conscious) processing
 - –Why does some information "stand out"?
 - Not exactly sure!
 - But it has something to do with the stimulus itself, and the person's current intentions or goals

Weber's law

• "just noticeable difference"

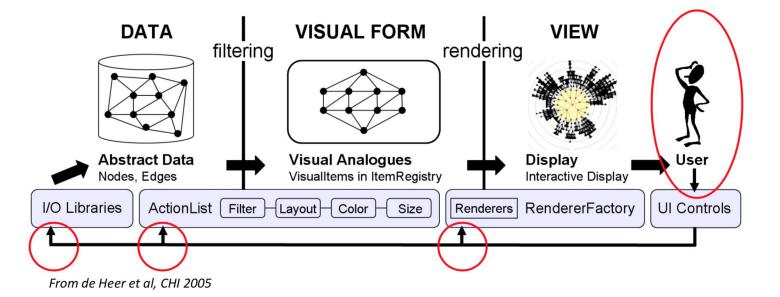
$$\frac{\mathsf{D}I}{I} = k$$

- I original intensity of the stimulus
- Change in I is the minimum difference required for it to be perceived (jnd)
- K constant

What is Information Visualization?

- Information visualization: "the use of interactive visual representations of abstract data to amplify cognition" (Ware, 2008)
- Abstract data include both numerical and non-numerical data

 Stock prices, social relationships, patient records
- Typical concerns: **discovery** of patterns, trends, clusters, outliers and gaps in data
- Design goal: be more than aesthetically pleasing, show measurable usability benefits across different platforms and users



Information Visualization

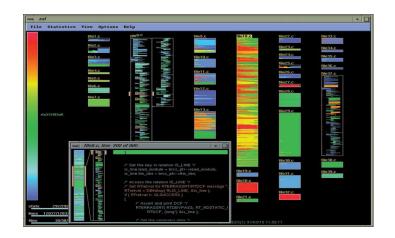
- Data, dimensionality of the data
- Presentation of the data
- Processing of the data
- Interaction with the data
- Dynamical view updating

Information Visualization Flow

HCI: disaster story

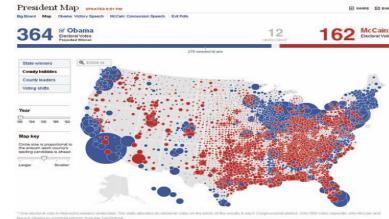
- 1988 :
- Iran Air Flight 655 shot down by USS Vincennes
- F-14?? 290 casualties
- Conclusion: 'Aegis had provided accurate data. The crew had misinterpreted it.'
- Different radar screens displayed different aspects of airplane
- Correlating information was difficult
- Vital data cluttered by trivial data

Data Type by Task Taxonomy


Data Types Document Lens, Seesoft™, Information Mural, 1D Linear TextArc 2D Map Geographic information systems, ESRI ArcInfo™, ThemeView™, newspaper layout, self-organizing maps Desktops, WebBook™, VRML™, Web3D™, 3D World architecture, computer-assisted design, medicine, molecules Parallel coordinates, scattergram matrices, Multidimensional hierarchical clustering, Spotfire®, Tableau®, GGobi®, DataDesk®, TableLens®, InfoZoom® DataMontage, Palantir, Project Managers, LifeLines, Temporal TimeSearcher Tree Outliners, degree-of-interest trees, cone/cam trees, hyperbolic trees, SpaceTree, treemaps Network NetMap™, netViz™, Pajek, JUNG, UCINet, NetDraw, TouchGraph, SocialAction, NodeXL

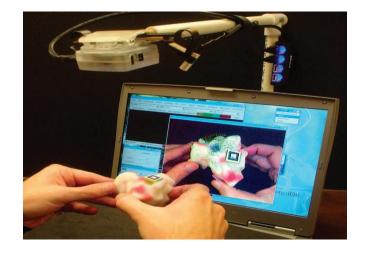
Only an even down of the continuous lighting
Gain an overview of the entire collection
Zoom in on items of interest
Filter out uninteresting items
Select an item or group and get details when needed
View relationships among items
Keep a history of actions to support undo, replay, and progressive refinement
Allow extraction of subcollections and of the query parameters

Data Type by Task Taxonomy: 1D Linear Data


- Items which can be organized sequentially e.g. text document, list of names
- Design issues:
 - -Colors, sizes, layout
 - -Scrolling, selection methods
- Example user tasks: check which items have some required attribute

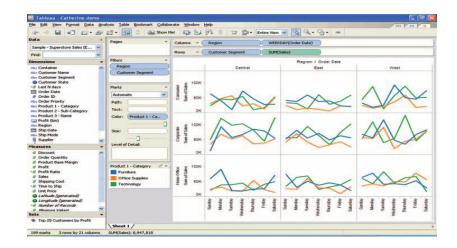
Data Type by Task Taxonomy: 2D Map Data

- Items make up some part of the 2D area
 - -Not necessarily rectangular, e.g. Lake on Google Map
 - -e.g. Geographic map, floor plans
- Example user tasks: finding items, finding paths between

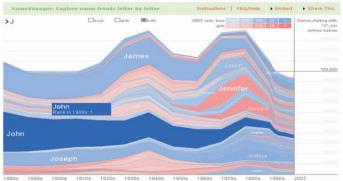


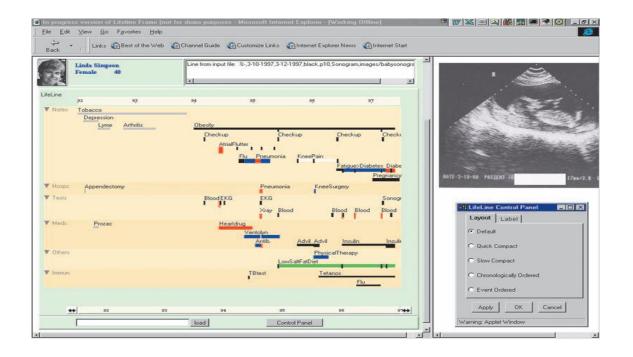
items

Data Type by Task Taxonomy: 3D World Data


- Items with complex relationships with other items
 - -e.g. Volume, temperature, density
 - –e.g. Medical imaging, architectural drawing, scientific simulations
- Design issues: position, orientation and navigation for viewing 3D application
- Example user tasks: temperature, density

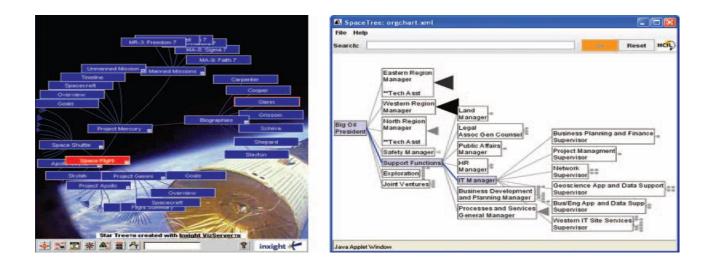
Data Type by Task Taxonomy: Multidimensional Data


- Items with **n attributes in n-dimensional space**
- Relational database contents can be treated this way
- Interface may allow user to view 2 dimensions at a time

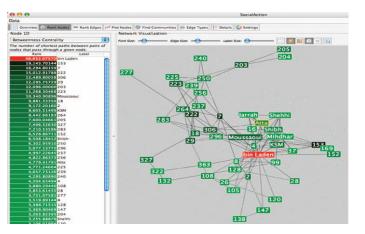

Data Type by Task Taxonomy: Temporal Data

- Very close idea to 1D sequential data, but warrant a distinct data type in the taxonomy as temporal data is so common
 - -e.g. Stock market data, weather
- Items have a beginning and end time, may overlap in time
- Example user tasks: finding events during a time period, searching for periodical behavior

Data Type by Task Taxonomy: Temporal Data (cont.)


Data Type by Task Taxonomy: Tree Data

- Non-root items have a link to a parent item Items, links can have multiple attributes e.g. Windows file explorer
- Example user tasks: how many items are children of a node, how deep or shallow is the graph


Data Type by Task Taxonomy: Tree Data (cont.)

Data Type by Task Taxonomy: Network Data

- Items linked to arbitrary number of other items
- Example user task: shortest path, least costly path
- How to visualize, layout the network?

The seven basic tasks

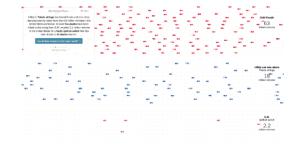
- 1. Overview: users can gain an overview of the entire collection
- 2. Zoom: users can zoom in on items of interest
- 3. Filter: users can filter out uninteresting items
- 4. Details-on-demand: users can select an item or group to get details
- 5. Relate: users can relate items or groups within the collection
- 6. History: users can keep a history of actions to support undo, replay, and progressive refinement
- 7. Extract: allow user to "save", publish, examine extracted items

Challenges for Information Visualization

- Importing and cleaning data
- Combining visual representations with **textual labels**: How to put on text labels (e.g. on a map) without covering what you wish to display?
- Finding related information: Proper judgment often requires looking at data derived from multiple sources
- Viewing large volumes of data
- Integrating data mining
- Integrating with analytical reasoning techniques: Use data to support or disclaim hypotheses
- Collaborating with others
- Achieving **universal usability**: Text, tactile or sonic representations?
- Evaluation

Challenges for Information Visualization

- Goal is to separate the "signal (information) from the noise (data)"
- Too much versus too little information
- Visualizations pass the eyeball test
- Minimalism emphasize the data rather than the scaffolding
 - -Avoid unnecessary and busy graphics
 - -Readable size, legible
 - -Appropriate use of color
 - -Appropriate scaling, alignment, symmetry



Exercise: A Record Year for Auto Recalls

In discussion groups please answer the following questions:

- What is the data shown in this visualization?
- · What questions does this visualization answer?
- What do you think about the use of animation?
- Is the visualization easy to understand?
- Can you read the data from the visualization?
- What is the visualization data type? What tasks can be performed?
- Why do you like / dislike this visualization?
- · Can you suggest any improvements? How would you redesign it?

NY Times: http://bit.ly/auto-recall

References

- Folk, C.L., & Remington, R. Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14, 445-465.
- Ware, Clin, *Visual Thinking for Design*, Morgan Kaufmann, San Francisco, CA (2008).
- http://www.cs.umd.edu/hcil/trs/96-13/96-13.html
- Cuffe, Kirkham, Dent, and Wilson, Data Visualization: The signal and the noise, IEEE Potentials July/August 2018

