
UX Design Principles and Guidelines

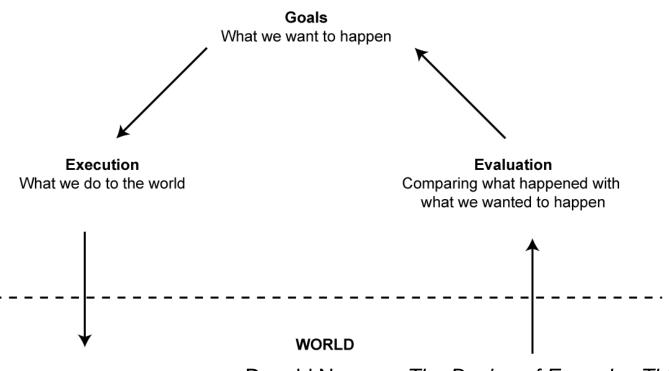
SWEN-444 Achieve Usability Goals

Design Thinking

Design Principles and Guidelines

User Populations

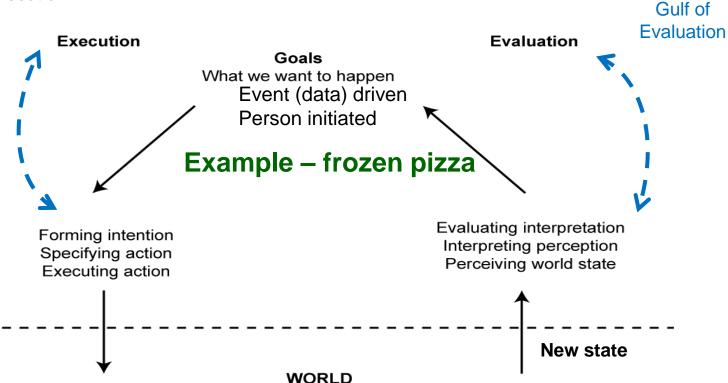
(Shared human ability and behavior) (Problem domains)

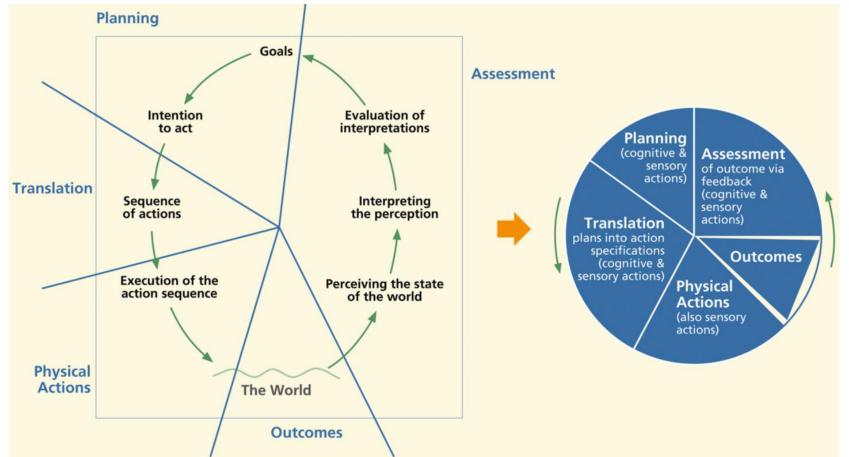

Computing Paradigms

(Platform guidelines and conventions)

Foundation Design Principles and Guidelines (Empirical)

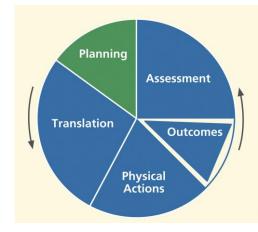
Norman's Interaction Model Execution/Evaluation Action Cycle




Donald Norman, The Design of Everyday Things, 1990

Execution/Evaluation Action Cycle: Stages of Action

Gulf of Execution



Framework to structure UX design principles and guidelines

Planning – Help Users Know What to Do


- Support user's overall understanding of design concept (mental model and metaphors)
 - Task organization and decomposition
- What system **features** exist and how to use them
- Possibilities for what users can do at every point
- Help users plan most efficient ways to complete tasks
- Keep users aware of system state and task progress
- Provide cognitive affordances to remind users to complete tasks

Translation: Help Users Know How To Do Something

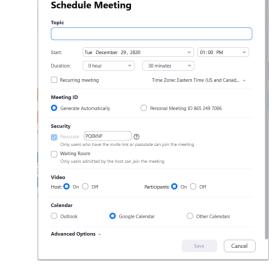
- Effective cognitive affordances to complete tasks
 - Users determine how to get started
 - Users know/learn what actions are needed to perform next
 - Help users predict the outcome of actions
 - Users reminded to complete all actions
- Cognitive affordances are noticeable(location), visible, and legible
- **Timely**, before associated exploit

Translation: Content and Meaning of Cognitive Affordance

- Use precise wording and naming for clarity in labels, menu titles, menu choices, icons, data fields
 - E.g., complete labels by using a noun and a verb
- Make choices distinguishable but consistent
 - Similar (different) names for similar (different) kinds of things
 - Avoid multiple synonyms for the same thing (e.g., "quit", "exit", "close")
 - Similar (different) object appearance for similar (different) kinds of things

Consistency problem(s)?

Translation: Content and Meaning of Cognitive Affordance


- Control complexity with object proximity and grouping
 - By related tasks and functions (more on this later)

Recognition over recall

- Recognition: remembering with the help of a visual clue
- Recall: remembering with no help
- Recognition is much easier

Enter the model number and description of the product you wish to purchase.

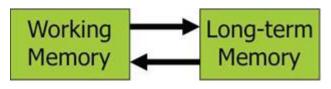
Schedule meeting

1

How We Remember Things

- Knowledge in the world
 - Intrinsic properties of real objects act as perceivable cues
 - Environment interpretation rather than learned
 - E.g., keyboard typing
- Knowledge in the head
 - Must be **recalled** from **short** and/or **long term memory**
 - May require **significant effort**, may be inaccurate
 - E.g., spelling a word
- They work together

Stages of Learning


Stages	Behaviors	Moods
Beginner	Limited or no knowledge	Ambition to learn, but fear of failure, impatient
Advanced Beginner	Familiarity with common situations, still needs help	Ambition but potential boredom or apathy
Competent	Has learned the norms for common situations unassisted	Confidence but anxiety, insecurity, frustration
Proficient	High level of skill, new standards of performance	Ambition, confidence but impatience, frustration, arrogance
Expert	Extensive experience, teaches others	Ambition, confidence and serenity but arrogance and impatience
Master	Big picture view, can make change happen to improve	Ambition, exploration but arrogance, boredom, disinterest

"A five-stage model of the mental activities involved in directed skill acquisition", Dreyfus, 1980

Translation: Design for Learnability, Memorability and Human Memory Limitations

- Don't assume because the interface tells the user something, they learn and remember it
- Working memory
 - Small 7 ± 2 chunks
 - <10 sec decay</p>
 - Rehearsal can impact decay
- Long term memory
 - Infinite in size and duration
 - Extensive rehearsal transfers chunks
- Chunk data; chunk is a unit of memory or perception
 - Hard: M W B C R A L O A B I M B F I
 - Easier: MWB CRA LOA BIM BFI
 - Easiest: BMW RCA AOL IBM FBI
 - Stacking task interruptions, limit depth

Design to avoid overloading working memory

Translation: Design for Understandability

Human Errors

- Slips and Lapses failure to execute a learned task
 - Slip: action not carried out as intended or planned
 - Lapse: missed actions and omissions due to short term memory failure - Interruptions, loss of intent
 - Typically found in skilled behavior
 - Most common human error due to inattention
- Mistakes use the wrong task
 - A type of error caused by a faulty plan/intention
 - Typically found in rule-based or problem-solving behavior

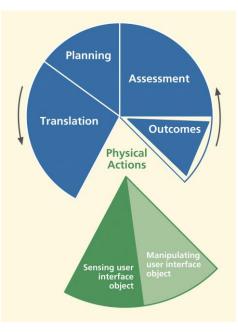
Translation: Design for Understandability

Error Prevention

- Different things should look and act differently
- Risky (consequential, hard to recover from errors) actions are separated from frequently used ones
- Avoid lapses keep task steps short, include forcing functions that require a sequence of steps (trade off of user freedom)
- Disable illegal commands
- Avoid using modes
- To prevent costly errors, **solicit user confirmation** before potentially destructive actions
 - Information on alternatives
 - But do not overuse and annoy

Translation: Task Efficiency

- Provide **alternative** ways to perform tasks
- Provide keyboard shortcut alternatives to avoid physical "switching" actions
- Task thread continuity
 - -Anticipate most likely next text, step, or action
 - If you tell them what they should do, help them get there


Translation: Task Efficiency

- Retain user state information
 - Example, having to find folder you are working in, over and over
- Keep the user in control
 - Good interfaces are **explorable**, errors are forgiven
 - Avoid too much automation
 - Provide a way for the user to "bail out" of an operation
 - Clear "do it" mechanism
 - A way to control the amount and detail of complex information/data feedback
- 3-Click-Rule users should not have to wait longer than three clicks to do something useful

Physical Actions: Help Users Do Tasks

- Necessary physical affordances for manipulating UI objects, making physical actions
- Effective **sensory** affordances **before** and **during** actions (e.g., drag and drop)
- Avoid physical **awkwardness** and **fatigue**; e.g., shifting from mouse to keyboard constantly
- Accommodate disabilities
 - Range of motion, fine motor control, vision, or hearing
 - (More on this later)
- Fitts' law target size and distance; avoid overshoot

Outcomes

- Internal, invisible system effect/result
 - Possible defects due to missing features, computational errors, software bugs
- Functional affordances of system functionality (usefulness)
- Outcomes must be revealed to user via system feedback
- Show automation success; e.g., GPS accuracy

Outcomes: Design for Efficiency - Performance

- **Perceptual fusion** two stimuli within perceptual cycle appear fused; $T_p \sim 100$ msec
- Response times:
 - ≤ 100 msec instantaneous
 - 0.1 1.0 sec user notices the delay, flow of thought may be interrupted
 - 1.5 sec display busy indicator
 - >1.5 sec display progress bar
 - > 10 sec may lose user's attention
- **2-Second-Rule:** users should not have to wait longer than 2 seconds for common UI actions

Assessment: Help Users Know if Interaction Was Successful

- Provide some type of **feedback** for all user actions
 - Helps keep the user grounded in the interactive cycle
 - Understandable timely **error messages** when things don't work
 - Progress feedback on long operations
- Presentation of feedback
 - Visible, legible, noticeable location
 - Minimize complexity with organized layout
 - Responsive design fit information format to screen size
- Meaning of feedback content in context of system state

Assessment

- Feedback wording
 - Helpful, informative
 - Positive psychological tone; it's the system's fault
 - Language of the user and domain context

Microsoft Office Outlook

There are unsent messages in your Outbox. To send messages, Outlook must remain running and connected to your e-mail server. Would you like to exit anyway?

No

Exiting in 8 seconds

Yes

Assessment

Mail Server Query

Results for hartson.cs.vt.edu

send: invalid spawn id (6) while executing "send "1\$pid\r"" (file "./genpid_query.pass" line 31)

Assessment – Information Visualization

- Represent "raw" data visually to help the user understand data meaning
 - Intuitive comprehension to "see" patterns, trends, outliers, etc., in large data sets
 - E.g., dashboards, charts
- What does the **user need to know** in the context of the application domain?

Broad Guidelines:

- Simplicity
 - Given two otherwise equivalent designs, the simplest is best (Ochham's Razor)*
 - Good enough effective and simple is a challenging design objective
 - 80/20 rule 20% of functionality gets used 80% of the time
 - 7 +/- 2 maximum number of vertical/horizontal divisions on a screen

Consistency

- Do similar things in different places the same way
- Label similar things the same
- A custom design style book can help

* "Entities should not be multiplied without necessity." William of Ockham, 14th century Franciscan friar

Broad Guidelines

• Use of language

- Avoid poor attempts at humor
- Avoid use of anthropomorphism
- Avoid using first-person speech
- Avoid condescending help (E. g., Clippy and Bob)
- Use positive psychological tone
- Avoid violent, negative, demeaning terms
- Avoid use of psychologically threatening terms, such as "illegal," "invalid," and "abort"
- Avoid use of term "hit"; instead use "press" or "click"

- More later on ...
 - Grouping
 - Color
 - Text
 - Accessibility
 - Platform conventions
 - Internationalization

The Last Word – Using Guidelines

- Thoughtfully interpret guidelines in the context of your design problem
- They are a "guide" **not mandated** design rules
- However, they are universally applicable to many technology platforms
- Guidelines may conflict and overlap
- Guidelines **don't guarantee** a quality UX
- The underlying principles don't change over time even as technology does

Team Activity

Work on the detailed design of your project, make sure to follow the UX guidelines during the whole Execution/Evaluation Action Cycle :

- 1. Planning:
- 2. Translation:
- 3. Physical Actions
- 4. Outcomes
- 5. Assessment

Appendix

Principles and Guidelines Reference

Planning – Design for Understandability

Match user's **mental model** of high-level task organization

What system features exist, what users can do at every point

Help users plan how to complete tasks efficiently

Keep users aware of task progress

Task completion reminders

Translation

Content and Meaning of Cognitive Affordance

Timely and visible cognitive affordances

Precise wording and naming

Make choices distinguishable but consistent

Avoid multiple synonyms for the same thing

Control complexity with **object proximity and grouping**

Recognition over recall

Recognition: remembering with the help of a **visual clue**

Recall: remembering with no help

Understandability: Error Prevention

Avoid Inappropriate and Erroneous User Choices

Disable buttons, menu choices to make inappropriate choices unavailable or gray out to make inappropriate choices appear unavailable

Different things should look and act differently

Separate risky (consequential, hard to recover from errors) actions from frequently used ones

Solicit user **confirmation** before potentially destructive actions; **risk** of user **annoyance**

Avoid memory lapses – short task steps, consider imposing a required sequence of steps (trade off of user freedom)

Avoid modes entirely, don't duplicate actions across modes

Provide cognitive affordances for **error recovery** Provide a clear way to **undo** and reverse actions Offer constructive **help** for error recovery

Translation (cont)

Task Efficiency

Provide **alternative ways** to **perform tasks**; e.g., keyboard alternatives to avoid physical switching actions

Task thread continuity - anticipate most likely next action, step, or task path

Do not make user redo any work, reenter data

Retain user state information

Example, having to find folder you are working in, over and over

Keep the user in control

Good interfaces are explorable, errors are forgiven

3-Click-Rule – users should not have to wait longer than three clicks to do something useful

Physical Actions Help Users Do Tasks

Physical affordances for sensing and manipulating UI objects for and during making physical actions

Avoid physical **awkwardness** and **fatigue**; e.g., shifting from mouse to keyboard constantly

Accommodate disabilities

Range of motion, fine motor control, vision, or hearing

Fitts' Law issues

Outcomes

Internal, invisible system effect/result

Functional affordances of system functionality (usefulness)

Outcomes must be revealed to user via system feedback

Show automation success; e.g., GPS accuracy

Response times:

< 100 msec – perceptual fusion as two stimuli appear to be

instantaneous

0.1 - 1.0 sec – user notices the delay

1.5 sec – display busy indicator

>1.5 sec – display progress bar

2-Second-Rule: users should not have to wait longer than 2 seconds for common UI actions

Provide some type of feedback for all user actions

Presentation of feedback – **visible, noticeable** location; augment with audio

Understandable error messages when things don't work

Progress feedback on long operations

Feedback wording

Helpful, informative Positive psychological tone; it's the system's fault Language of the user and domain context

Feedback consistency – label departure and destination screens consistently

Presentation

Provide **user control** over **amount** and **detail** of **feedback**; most **important** information at **first**, more on demand

Information display

Eliminate unnecessary words

Group related information

Control density of displays; use white space to set off

Columns are easier to read than wide rows (see

newspapers)

Responsive design – format information to fit the

screen size (more on this later)

Visualization for large data sets

Broad Guidelines

Given two otherwise equivalent designs, the **simplest is best** (Ochham's Razor)* A design challenge.

80/20 rule - 20% of functionality gets used 80% of the time

Good enough – choose a **satisfactory** solution **rather than** the **optimal** solution; avoid complexity

7 +/- 2 maximum number of vertical/horizontal divisions on a screen

Consistency - label and do similar things in different places the same way

Use of language – avoid use of **poor humor**, anthropomorphism, first **person speech**, **condescending** and other **psychologically negative words** (e.g., violent, demeaning, threatening)

* "Entities should not be multiplied without necessity." William of Ockham, 14th century Franciscan friar