
An Analysis of Massively Distributed Evolutionary Algorithms

Travis Desell, David P. Anderson, Malik Magdon-Ismail, Heidi Newberg,
Boleslaw K. Szymanski and Carlos A. Varela

Abstract— Computational science is placing new demands on
optimization algorithms as the size of data sets and the compu-
tational complexity of scientific models continue to increase. As
these complex models have many local minima, evolutionary
algorithms (EAs) are very useful for quickly finding optimal
solutions in these challenging search spaces. In addition to the
complex search spaces involved, calculating the objective func-
tion can be extremely demanding computationally. Because of
this, distributed computation is a necessity. In order to address
these computational demands, top-end distributed computing
systems are surpassing hundreds of thousands of computing
hosts; and as in the case of Internet based volunteer computing
systems, they can also be highly heterogeneous and faulty.
This work examines asynchronous strategies for distributed
EAs using simulated computing environments. Results show
that asynchronous EAs can scale to hundreds of thousands of
computing hosts while being highly resilient to heterogeneous
and faulty computing environments, something not possible for
traditional distributed EAs which require synchronization. The
simulation not only provides insight as to how asynchronous
EAs perform on distributed computing environments with
different latencies and heterogeneity, simulation also serves as a
sanity check because live distributed systems require problems
with high computation to communication ratios and traditional
benchmark problems cannot be used for meaningful analysis
due to their short computation time.

I. I NTRODUCTION

Computational science is placing new demands on op-
timization algorithms as the size of data sets and the
computational complexity of scientific models continue to
increase. As these complex models have many local minima,
evolutionary algorithms (EAs) are very useful for quickly
finding optimal solutions in these challenging search spaces.
In addition to the complex search spaces involved, calcu-
lating the objective function can be extremely demanding
computationally. In order to address these computational de-
mands, top-end distributed computing systems are surpassing
hundreds of thousands of computing hosts.

As the size of computing systems continues to increase,
having scalable EAs becomes very important. Additionally,
larger computing systems increase the potential for faulty
computing hosts. In grid computing and especially Internet
computing, increasing the number of hosts means that hosts
will be spread out farther geographically, increasing the
heterogeneity of communication, and that they will consistof
different architectures and operating systems, increasing the

Travis Desell, Malik Magdon-Ismail, Boleslaw K. Szymanski and Carlos
A. Varela are with the Department of Computer Sciences, Heidi Newberg is
with the Department of Physics, Applied Physics and Astronomy, Rensselaer
Polytechnic Institute, Troy, New York 12180, USA.

David P. Anderson is with the U.C. Berkeley Space Sciences Laboratory,
University of California, Berkeley, Berkeley, California94720, USA.

heterogeneity of calculation times. Because of this, the dis-
tributed evolutionary algorithms used must also be resilient
to faults and heterogeneous communication and computation
times.

This work discusses different strategies for computing
EAs on distributed environments. In particular, sequential
strategies which require synchronization between successive
populations are compared to asynchronous strategies that do
not have explicit dependencies. A simulation framework is
used to examine these different distributed EA strategies on
various simulated computing environments. A simple homo-
geneous environment which represents computing clusters
or supercomputers is used to compare the scalability of se-
quential (or parallel) EAs to asynchronous EAs. A computing
environment with various communication latencies is used to
examine the effect of heterogeneity on asynchronous EAs.
Lastly, a complex Internet-like distributed computing envi-
ronment is modeled using data from the MilkyWay@Home
volunteer computing project1.

Results show that while parallel EAs have difficulty scal-
ing to massively distributed computing environments, which
can have thousands or more computing hosts, asynchronous
EAs scale well to a hundred thousand computing hosts. Ad-
ditionally, asynchronous EAs are shown to requirelessevalu-
ations to reach a solution as the heterogeneity of the comput-
ing environment is increased. Furthermore, results show that
for certain benchmark problems on the MilkyWay@Home-
like computing environment, some asynchronous EAs lose
the ability to find the solution, while others gain the ability
to find the solution when they could not on other computing
environments. This is particularly interesting as the heuristics
used to evolve the population did not change, only the
order in which the results were received. These results show
that not only are asynchronous EAs an effective solution to
the problems involved in massively distributed computing,
but that there is potential for improving the robustness or
convergence rates of EAs by changing the order in which
they process individuals.

II. EVOLUTIONARY ALGORITHMS FORCONTINUOUS

SEARCH SPACES

Current popular approaches to global optimization for con-
tinuous search spaces involve differential evolution, particle
swarm optimization and genetic search. In general, individ-
uals are sets of parameters to an objective function which
is trying to be optimized. Applying the objective function to
an individual provides the fitness of that individual, and the

1http://milkyway.cs.rpi.edu



Fig. 1. A two dimensional example of how an individual moves in
differential evolution.

evolutionary algorithms evolve individuals through different
heuristics to try and find the best possible fitness, which
optimizes the objective function.

A. Genetic Search

Genetic search is the most classical example of an evo-
lutionary algorithm. It generates successive populationsof
individuals by applyingselection, mutationand recombina-
tion to the individuals in the previous population.Selec-
tion selects the best members of the previous population.
Mutation takes an individual and modifies a parameter at
random. Typically the parameter is mutated to any new
possible value; and a common improvement is do adaptively
reduce the distance from the original parameter the mutation
can take.Recombinationtypically takes two individuals as
parents and generates a child individual by combining the
parents’ parameters. However many variants use more than
two parents [1], [2], [3], [4]. Where theith parameter of the
child, ci, is generated from theith parameter of the parents,
p1

i ... pn
i , D is the number of parameters in the objective

function, andr is a random number generator, some common
recombination operators are:

• binomial recombination,bin(p1, p2):

ci =

{

p1
i if r[0, 1) < σ or i = r(0,D)

p2
i otherwise

(1)

• exponential recombination,exp(p1, p2):

ci =

{

p1
i from r[0, 1) < σ or i = r(0,D)

p2
i otherwise

(2)

• simplex recombination,simplex(p1, ..., pn):

ci = pworst
i + r(0, 1)∗ (average(p1, ..., pn)i −pworst

i )

(3)

B. Differential Evolution

Differential evolution is an evolutionary algorithm used
for continuous search spaces developed by Storn and Price
over 1994–1995 [5]. Unlike other evolutionary algorithms,
it does not use a binary encoding strategy or a probability
density function to adapt its parameters, instead it performs
mutations based on the distribution of its population [6]. For
a wide range of benchmark functions, it has been shown

to outperform or be competitive with other evolutionary
algorithms and particle swarm optimization [7].

Differential evolution evolves individuals by selecting
pairs of other individuals, calculating their differential, scal-
ing it and then applying it to another parent individual. Some
kind of recombination (e.g., binary or exponential) is then
performed between the current individual and the parent
modified by the differentials (see Figure 1). If the fitness
of the generated individual is better than the current indi-
vidual, the current individual is replaced with the new one.
Differential evolution is often described with the following
naming convention, “de/parent/pairs/recombination”, where
parent describes how the parent is selected (e.g., best or
random),pairs is the number of pairs used to calculate the
differentials, andrecombinationis the type of recombination
applied.

In general, a new potential individualni(l + 1) for a new
populationl + 1 is generated from theith individual xi(l)
from the previous populationl, and selected if its fitness,
f(x), is greater than the previous individual:

xi(l+1) =

{

ni(l + 1) if f(ni(l + 1)) > f(xi(l))
xi(l) otherwise

(4)

The jth parameter is calculated givenp pairs of random
individuals from the populationl, wherer(l)0 6= ... 6= r(l)2p.
θ, φ and σ are the user definedparent scaling factor,
recombination scaling factorandcrossover rate, respectively.
b(l) is the best individual in the populationl. Two popular
variants are:

• de/best/p/bin:

ni(l +1) = bin(xi(l), θb(l)
0
j +φ

p
∑

k=1

[r(l)1k
j − r(l)2k

j ])

(5)

• de/rand/p/bin:

ni(l +1) = bin(xi(l), θr(l)
0
j +φ

p
∑

k=1

[r(l)1k
j − r(l)2k

j ])

(6)

Which are used in this work. For more detail, Mezura-
Monteset al. have studied many different variants of differ-
ential evolution on a broad range of test functions [8].

C. Particle Swarm Optimization

Particle swarm optimization was initially introduced by
Kennedy and Eberhart [9], [10] and is a population based
global optimization method based on biological swarm in-
telligence, such as bird flocking, fish schooling, etc. This
approach consists of a population of particles, which “fly”
through the search space based on their previous velocity,
their individual best found position (cognitive intelligence)
and the global best found position (social intelligence). Two
user defined constants,c1 and c2, allow modification of the
balance between local (cognitive) and global (social) search.



Fig. 2. A two dimensional example of how a particle moves in particle
swarm optimization.

Later, an inertia weightω was added to the method by Shi
and Eberhart to balance the local and global search capability
of PSO [11] and is used in this work and by most modern
PSO implementations. The population of particles is updated
iteratively as follows, wherex is the position of the particle
at iterationt, v is it’s velocity, p is the individual best for
that particle, andg is the global best position (Figure 2 shows
how a single particle can move in two dimensions):

vi(t + 1) = ω ∗ vi(t)
+c1 ∗ rand() ∗ (pi − xi(t))
+c2 ∗ rand() ∗ (gi − xi(t))

xi(t + 1) = xi(t) + vi(t + 1)

(7)

III. D ISTRIBUTED EVOLUTIONARY ALGORITHMS

There have been many different approaches to making
EAs work on different distributed computing systems. In
general these approaches are either sequential, with distinct
synchronization points, or asynchronous, without distinct
synchronization points.

A. Sequential Approaches

Sequential approaches to distributed EAs typically use
a single-population strategy, where new populations are
generated repeatedly by evaluating each individual in par-
allel; repeating this process until the population has reached
convergence criteria [12], [13]. It is possible to increase
scalability past the population size by additionally evaluating
the objective function in parallel. This type of approach is
best suited to highly reliable and homogeneous computing
nodes, as found in clusters and supercomputers.

B. Hybrid Approaches

Hybrid approaches involveislands of populations [14].
The different populations are evaluated sequentially and then
asynchronously migrate selected individuals to neighboring
islands when certain criteria are met [15], [16], [17], [18].
Tasoulis et al. have shown that having moderate values
for migration result in the best convergence for differential
evolution across a variety of benchmarks [19]. It has been

shown that super-linear speedup can be attained using this
method, as smaller populations can converge to minima
quicker than larger populations [20], [21]. However, having
populations of different sizes and/or populations runningon
clusters of different speeds can have varying negative effects
on the performance of the search. As each island can be
parallelized in the same manner as a single population EA,
this approach is well suited to grid computing systems, where
islands can be assigned to individual clusters within the grid.
Island EAs have also been used in peer-to-peer computing
systems [22].

C. Asynchronous Approaches

Asynchronous approaches to distributed EAs typically use
a single-population and a master-worker model. One ap-
proach is to generate the population and have workers request
individuals to evaluate, using a work-stealing model [23],
[24]. Many approaches to particle swarm use a method
where individual particles are calculated in parallel and
newly found global best positions are then broadcast asyn-
chronously [25], [26]. However, as with single-population
sequential approaches these strategies are limited by the
population size used by the EA.

In order to overcome the scalability limitations presented
by these different strategies, the authors have developed
asynchronous optimization, a strategy which is not limited
in scalability [27], [4]. Similar to steady state genetic search,
which generates one individual at a time and uses it to
monotonically update a population; asynchronous optimiza-
tion generates new individuals based on a populations current
state in response to requests for work and later inserts the
results to the population when and if they are reported. As
the heuristics for generating new individuals in the discussed
EAs are randomized, this allows asynchronous evolutionary
algorithms to generate as many unique individual as are
required to satisfy all potential workers. There are also no
dependencies between generated individuals, so if a worker
fails and does not report the fitness of its individual, the
search does not need to wait for that individual to be
recalculated.

IV. SIMULATION FRAMEWORK

In order to test the effect of different distributed com-
puting platforms and their size on the convergence rates of
different EAs, a simulation environment was developed. This
environment can simulate heterogeneity and failures, while
quickly evaluating different search methods using various
benchmark functions. The simulated computing environment
requests parameter sets to be evaluated then returns those
results after a simulated amount of time (or not at all). In
addition to testing the search methods on functions known to
be difficult to find a global optimum for, this also provides a
method to evaluate the effect of asynchrony in a controlled
environment,e.g., the number of updates to the population
that occur before the result of a parameter set is reported can
be generated through different probability distributionsand



Fig. 3. The simulated evaluation framework. A simulated environment
is used instead of different distributed computing environments. Computed
results are stored in a heap and inserted into the populationin order of their
simulated report time.

the minimum and maximum update times for parameter sets
can be fixed.

The simulation framework consists of two basic parts.
The first allows users to specify templates which control the
amount of asynchrony and fault rates in the system. Users
can specify the amount of time it takes for results to be
calculated and the number of faults that occur. The amount
of time it takes for a result to be calculated is probabilistic,
specifying the percentage chance for a result to take the
time between a minimum and maximum given time and
a probabilistic distribution function. Currently, uniform and
gamma distributions are implemented. The gamma distribu-
tion was chosen because it typically is used to model waiting
times, which is ideal for this type of simulation. Multiple
distributions can be used, which is important in modeling
grid and Internet-like environments which may have different
result time distributions if different types of hardware are
used.

The other part is the simulated evaluation environment
(see Figure 3). The simulations run with a specified number
of workers, allowing the size of the simulated computing
environment to be modified. A heap is used to handle
results that are currently being calculated by the simulated
environment. This allows insert and removal of results to
be done inO(log(n)) time. The heap is initially populated
with a number of results equal to the number of workers
and each is given a report time (trip time plus calculation
time) that is calculated using the specified distributions in
the simulation template. If a result is determined to be faulty
another trip and calculation time are generated, and this is
repeated until the result is determined to be non-faulty and
the result time is the sum of all generated computation and
trip times. Following this, the minimum value is removed
from the heap and inserted into the search and the current
simulation time is set to the report time of that result. A new
result is then generated with a new report time, which is
the current time plus the result calculation time, and inserted
into the heap. This essentially simulates workers requesting a
new result, calculating the result and sending it to the server.

Faults require the initial worker to error out and then have
the same work sent to a different worker.

V. RESULTS

The simulation environment was used to compare the
asynchronous EA strategy to the basic single population
evolutionary algorithm strategy. While the island strategyof
distribution is a popular one, the authors feel that in some
sense it is independent of actually making an evolutionary
algorithm parallel. For example, many hybrid strategies use
multiple populations orneighborhoodstrategies which divide
populations into distinct subpopulations, without any form of
distribution [28], [29], [2], [30], [31]. Asynchronous EAs
and parallel EAs are more primitive to the distribution
problem, as each island population can be evolved using
either. Additionally, island style EAs can be performed by
asynchronous EAs, by subdividing the population server side.

A. Optimization Parameters

For genetic search, a mutation rate of0.3 was used, and the
simplex recombination method was used, withl1 = −1.5,
l2 = 1.5 and 2 parents (previous work has shown this
to outperform other recombination operators [27]). Particle
swarm used an inertia weight,ω = 0.5, and c1 = c2 =
2.0. Differential evolution used binomial recombination with
either best or random parent selection, one pair, a recombi-
nation scale of0.5 and a recombination rate of0.5.

B. Test Functions

The Ackley, Griewank, Rastrigin, Rosenbrock and Sphere
problems were used as benchmark optimization problems,
which are described in detail in various other work [27], [32],
[33], [34]. The Ackley and Sphere problems used10 search
parameters, and the Griewank, Rastigin and Rosenbrock
problems used5 search parameters. A solution was assumed
to be reached when the fitness of best member in the
population was less than10−10, and the results presented
are the average of 20 different searches.

C. Simulated Environments

Three different simulated computing environment types
(homogeneous, heterogeneous and internet-like) were used
to examine the effects of heterogeneity and the scalabilityof
asynchronous EAs and parallel EAs.

1) Homogeneous Environments:The simulated homoge-
neous environment models computing on a cluster, super-
computer or even a graphical processing unit (GPU), where
computation time and latency on the distributed processors
(or threads) is uniform. This type of computing environment
was simply modeled by using a fixed result report time
of 1 was used. The number of parallel computing hosts
used was increased from100 to 100, 000. As parallel EAs
require a population size equal to the amount of computing
hosts, the population size of the parallel EAs was increased
accordingly. Asynchronous EAs have no such limitation, so
a fixed population size of100 was used for all amounts of
computing hosts, however for the Rastrigin and Rosenbrock



Simulated Computing Hosts
100 1000 10000 100000

Ackley
PGS 169.76 345.37 380.47 N/A
AGS 169.76 45.23 18.18 10.57
Speedup 0 7.66 21.11 N/A
PPSO 128.13 76.04 36.18 27.47
APSO 128.13 19.63 9.49 6.72
Speedup 0 3.87 3.81 4.08
PDE/best N/A 61.41 33.34 21.30
ADE/best N/A 61.41 13.17 7.53
Speedup N/A 0 2.53 2.83
PDE/rand 85.74 123.44 164.72 186.69
ADE/rand 85.74 25.38 10.81 6.51
Speedup 0 4.86 15.23 28.67

Griewank
PGS 15498.63 11720.21 8752.28 N/A
AGS 15498.63 1545.68 214.19 52.96
Speedup 0 7.58 40.89 N/A
PDE/rand 1109.67 1379.61 1414.353 1415.571
ADE/rand 1109.67 142.16 39.636 18.557
Speedup 0 9.71 35.67 76.28

Rastrigin
PGS 9458.45 666.64 585.84 N/A
AGS 9458.45 132.86 40.60 21.42
Speedup 0 5.02 14.4 N/A
PPSO 285.76 180.52 88.85 68.59
APSO 285.76 45.00 18.51 11.17
Speedup 0 4.01 4.80 6.14
PDE/best N/A 70.44 65.95 56.93
ADE/best N/A 70.44 26.64 14.47
Speedup N/A 0 2.47 3.93
PDE/rand 603.37 876.09 915.63 908.44
ADE/rand 603.37 107.33 32.30 16.25
Speedup 0 8.18 28.33 55.87

Rosenbrock
PPSO 21182.11 7940.44 910.84 121.52
APSO 21182.14 2464.42 691.08 257.89
Speedup 0 3.22 1.32 0.47
PDE/best N/A 58.48 53.01 50.25
ADE/best N/A 58.48 25.02 16.53
Speedup N/A 0 2.12 3.13
PDE/rand 243.19 212.68 202.89 199.07
ADE/rand 243.19 56.94 25.94 15.78
Speedup 0 3.73 8.08 12.59

Sphere
PGS 20911.79 15329.22 12811.55 12019.73
AGS 20911.79 2074.40 263.94 75.07
Speedup 0 7.39 48.71 160.25
PPSO 300.68 221.32 174.10 142.78
APSO 300.68 65.38 30.97 20.99
Speedup 0 3.38 5.61 7.1
PDE/best 77.97 69.06 63.79 59.16
ADE/best 77.97 37.66 24.72 19.93
Speedup 0 1.86 2.6 3.10
PDE/rand 372.29 434.41 436.33 434.02
ADE/rand 372.29 98.58 46.60 28.70
Speedup 0 4.40 9.36 15.12

Fig. 4. Average number of iterations to solution for asynchronous EA and
parallel EA strategies for different benchmark problems. Asynchronous EAs
used a fixed population size of100, except for ADE/best on the Ackley,
Rastrigin and Rosenbrock problems, which required a population size of
1000. The parallel EAs used a population size equal to the number of
processors.

problems a population size of100 was insufficient to solve
the problem so a population size of1, 000 was used.

Figure 4 shows the number of iterations taken to reach a
solution, where an iteration consists of sending a work to
each computing host and the receiving those results. It is
important to note that increasing the population size of a
parallel EA to account for the amount of computing hosts
can actually increase the time to a solution, as in the case of
parallel differential evolution with random parent selection
(PDE/random) for the Rastrigin problem. And in many other
cases, increasing the population size to match the amount
of computing hosts for the parallel EAs has no noticeable
improvement to the time to solution. Of all the parallel EAs,
parallel particle swarm optimization (PPSO) seemed to be the
most resilient to increasing the population size to match the
number of computing hosts, often showing improved time to
solution. On the other hand, using asynchronous EAs always
resulted in improved time to convergence as the number of
computing hosts was increased.

2) Heterogeneous Environments:Parallel EAs are poorly
suited to heterogeneous environments, as they have to wait
for the slowest computing host to calculate the fitness of its
individual before they can progress to generating and eval-
uating the next population. Asynchronous EAs do not have
any dependencies however, so they are better suited to these
types of computing environments. A simple heterogeneous
environment was used to evaluate the effect of heterogeneity
on asynchronous EAs. A fixed compute time of1 was used,
and the range of possible communication times was increased
from (0,1] to (0,1000]. Communication times were generated
uniformly across the possible range. All the tests used a fixed
number of10, 000 simulated computing hosts and population
sizes of100 unless otherwise noted.

Figure 5 shows the number of evaluations taken to reach a
solution for the different benchmark problems on simulated
heterogeneous environments. While parallel EAs would re-
quire the same number of evaluations to reach the solution
as heterogeneity does not effect the order in which results
are used to generate subsequent populations; asynchronous
EAs required less evaluations to reach a solution as the
heterogeneity increased. For some searches this effect tapered
off after reaching a certain result report time range, however
in general further heterogeneity did not begin to increase the
number of evaluations taken to reach a solution.

3) Internet-like Environments:In order to test the scala-
bility of asynchronous EAs on more realistic and massively
distributed heterogeneous environments, the time to report re-
sults were examined using data from the MilkyWay@Home
project. Figure 6 shows the frequency of report times for a
sample of10, 000 results reported to the MilkyWay@Home
server. The different results were separated into both GPU
and CPU results, as GPUs can perform the calculation orders
of magnitude faster than CPUs. The result report time is the
time it took from the moment a parameter set was generated
to the time the parameter set was reported with a result
and inserted into the search population. The different points



Fig. 5. Number of evaluations to solution for asynchronous EAs on
simulated heterogeneous environments. A fixed compute time of1 was used,
and communication times were generated uniformly and randomly between
0 and the given range.

Fig. 6. Frequency of time taken to download, calculate and report results
to the MilkyWay@Home server for GPU and CPU processors.

on the chart were found by calculating the frequency of a
result being reported in 250 second bins, and dividing this
frequency by the total number of data points and the bin size.

It was possible to fit the frequency GPU and CPU result
times using the gamma distribution (see Equation 8), which
is commonly used in probability to model waiting times. The
gamma distribution function for a random variablex takes
two positive input parameters, a shape parameterα and an
inverse scale parameterβ:

gamma(x;α, β) =
βα

Γ(α)
xα−1e−βx (8)

Γ(α) = (α − 1)!, if α is a positive integer (9)

Figure 6 shows the gamma distributions used to model
the GPU and CPU wait times. These gamma distributions
were used to randomly generate result times. As bothα and
β were integers, random result times could be generated as
follows:

randgamma(α,β) =
1

β
Σα

i=1(ln Ui) (10)

Where Ui are all uniformly distributed on (0,1] and
independent. As 40% of the results received by Milky-
Way@Home were GPU results, the simulation generated
result report times usinggamma(3, 1000) 40% of the time
and withgamma(2, 12000) otherwise.

Figure 7 shows the simulated time to solution for asyn-
chronous EAs on a MilkyWay@Home-like computing envi-
ronment, as the number of computing host increases from
100 to 100, 000. For all benchmark problems, as the number
of simulated computing hosts increased the time to solution
decreased, which is a promising result because it shows that
in a more realistic environment, asynchronous EAs still scale
well to very large environments. A population size of100
was used for all searches.



Fig. 7. Simulated time to solution for asynchronous EAs on a simulated
internet-like environment for the different benchmark problems.

Interestingly, ADE/best, which could not solve the Rastri-
gin test function with a population size of100 on a homo-
geneous environment or with smaller numbers of simulated
computing hosts, was able to solve the test function when
the number of workers increased to100, 000. Not only could
it solve the problem, but found solutions in less time than
the other EAs that were used. Another unexpected result
is that while AGS could solve the Sphere and Griewank
problems in both the simulated homogeneous and simple het-
erogeneous environments, it could not solve the test function
in a MilkyWay@Home-like environment. This is especially
interesting in that the Sphere function is well defined and
supposedly easy to solve as there is only a single minimum.
These results seem to indicate that a realistic heterogeneous
environment may harm the exploitative ability of AGS.

VI. CONCLUSIONS

This work presents different strategies for distributed evo-
lutionary algorithms (EAs). A simulation framework is used
to evaluate the performance of different EAs on various
distributed computing systems. In addition to using sim-
ple simulated homogeneous and heterogeneous computing
environments, data from the MilkyWay@Home volunteer
computing project2 is used to simulate an actual Internet-
like distributed computing environment with thousands of
heterogeneous hosts. It is shown that using an asynchronous
strategy over a sequential strategy can greatly increase the
scalability of an evolutionary algorithms. Traditional sequen-
tial distributed computing strategies are shown to not provide
any improvement or can even increase the time to solution.
Additionally, the asynchronous strategy presented is shown
to be resilient to faults and highly heterogeneous computing
environments, even taking less evaluations to reach a solution
as the heterogeneity increases.

The EAs examined in this work only consist of single
population strategies as these are seen as a more primitive
problem which can be applied to multi-population (or island)
strategies. As island strategies have been shown to potentially
provide super-linear speed speed up [20], [21], future work
would involve analyzing asynchronous EAs within islands
on large and heterogeneous computing environments. Addi-
tionally, the MilkyWay@Home-like computing environment
generated interesting results where certain EAs stopped being
able to find the solution to benchmark problems, while
others gained the ability to find the solution to benchmark
problems they otherwise could not solve. This is particularly
interesting considering that the heuristics used to generate
new children did not change, only the order in which the
results were received was changed. This provides a promising
area for further research as to the effect of heterogeneity on
distributed EAs.

As computing environments continue to become more
distributed and heterogeneous, results from this work show
that using an asynchronous strategy for distributed EAs

2http://milkyway.cs.rpi.edu



can provide significant benefits in terms of scalability and
resilience to heterogeneity and faults.

ACKNOWLEDGMENT

Special thanks go to the Marvin Clan, David Glogau,
and the Dudley Observatory for their generous donations
to the MilkyWay@Home project, as well as the thousands
of volunteers that made this data used in this work a
possibility. This work has been partially supported by the
National Science Foundation under Grant Numbers 0612213,
0607618, 0448407 and 0947637. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] J. Yen, J. C. Liao, B. Lee, and D. Randolph, “A hybrid approach to
modeling metabolic systems using a genetic algorithm and simplex
method,” IEEE Transactions on Systems, Man and Cybernetics, Part
B, vol. 29, no. 2, pp. 173–191, April 1998.

[2] S. C. Satapathy, J. Murthy, P. Prasada, V. Katari, S. Malireddi, and
V. S. Kollisetty, “An efficient hybrid algorithm for data clustering using
improved genetic algorithm and nelder mead simplex search,” inIn-
ternational Conference on Computational Intelligence andMultimedia
Applications, vol. 1, December 2007, pp. 498–510.

[3] V. Katari, S. C. Satapathy, J. Murthy, and P. P. Reddy, “Hybridized
improved genetic algorithm with variable length chromosome for
image clustering,”IJCSNS International Journal of COmputer Science
and Network Security, vol. 7, no. 11, pp. 121–131, November 2007.

[4] T. Desell, B. Szymanski, and C. Varela, “An asynchronous hybrid
genetic-simplex search for modeling the milky way galaxy using
volunteer computing,” inGenetic and Evolutionary Computation Con-
ference, Atlanta, Georgia, July 2008.

[5] R. Storn and K. Price, “Minimizing the real functions of the ICEC’96
contest by differential evolution,” inProceedings of the IEEE Interna-
tional Conference on Evolutionary Computation, Nagoya, Japan, 1996,
pp. 842–844.

[6] H.-P. Schwefel,Evolution and Optimization Seeking. New York: John
Wiley & Sons, 1995.

[7] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms
on numerical benchmark problems,” inCongress on Evolutionary
Computation 2004 (CEC2004), vol. 2, June 2004, pp. 1980–1987.

[8] E. Mezura-Montes, J. Velzquez-Reyes, and C. A. C. Coello, “A
comparative study of differential evolution variants for global opti-
mization,” in Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, 2006, pp. 485–492.

[9] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in IEEE
International Conference on Neural Networks, vol. 4, 1995, pp. 1942–
1948.

[10] R. C. Eberhart and J. Kennedy, “A new optimizer using particle
swarm theory,” inSixth International Symposium on Micromachine
and Human Science, 1995, pp. 33–43.

[11] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
IEEE World Congress on Computational Intelligence, May 1998, pp.
69–73.

[12] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka,and A. D.
George, “Parallel global optimization with the particle swarm algo-
rithm,” International Journal for Numerical Methods in Engineering,
vol. 61, no. 13, pp. 2296–2315, December 2004.

[13] S. Baskar, A. Alphones, and P. N. Suganthan, “Concurrent PSO
and FDR-PSO based reconfigurable phase-differentiated antenna array
design,” inCongress on Evolutionary Computation, vol. 2, June 2004,
pp. 2173–2179.

[14] E. Cantu-Paz, “A survey of parallel genetic algorithms,” Calculateurs
Paralleles, Reseaux et Systems Repartis, vol. 10, no. 2, pp. 141–171,
1998.

[15] H. Imade, R. Morishita, I. Ono, N. Ono, and M. Okamoto, “A
grid-oriented genetic algorithm framework for bioinformatics,” New
Generation Computing: Grid Systems for Life Sciences, vol. 22, pp.
177–186, January 2004.

[16] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee, “Efficient
hierarchical parallel genetic algorithms using grid computing,” Future
Generation Computer Systems, vol. 23, pp. 658–670, May 2007.

[17] T. Peachey, D. Abramson, and A. Lewis, “Model optimization and
parameter estimation with Nimrod/o,” inInternational Conference on
Computational Science, University of Reading, UK, May 2006.

[18] A. Lewis and D. Abramson, “An evolutionary programming algorithm
for multi-objective optimisation,” inIEEE Congress on Evolutionary
Computation (CEC2003), vol. 3, December 2003, pp. 1926–1932.

[19] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M.N. Vrahatis,
“Parallel differential evolution,” inCongress on Evolutionary Compu-
tation 2004 (CEC2004), vol. 2, June 2004, pp. 2023–2029.

[20] E. Alba and J. M. Troya, “Analyzing synchronous and asynchronous
parallel distributed genetic algorithms,”Future Generation Computer
Systems, vol. 17, pp. 451–465, January 2001.

[21] J. Berntsson and M. Tang, “A convergence model for asynchronous
parallel genetic algorithms,” inIEEE Congress on Evolutionary Com-
putation (CEC2003), vol. 4, December 2003, pp. 2627–2634.

[22] G. Folino, A. Forestiero, and G. Spezzano, “A JXTA basedasyn-
chronous peer-to-peer implementation of genetic programming,” Jour-
nal of Software, vol. 1, pp. 12–23, August 2006.

[23] B.-I. Koh, A. D. George, and R. T. Haftka, “Parallel asynchronous
particle swarm optimization,”International Journal of Numerical
Methods in Engineering, vol. 67, no. 4, pp. 578–595, July 2006.

[24] G. Venter and J. Sobieszczanski-Sobieski, “A parallelparticle swarm
optimization algorithm accelerated by asynchronous evaluations,” in
Sixth World Congresses of Structural and Multidisciplinary Optimiza-
tion, May 2005, pp. 1–10.

[25] J. R. Prez and J. Basterrechea, “Particle swarms appliedto array
synthesis and planar near-field antenna measurements,”Microwave
and Optical Technology Letters, vol. 50, no. 2, pp. 544–548, February
2008.

[26] L. Xu and F. Zhang, “Parallel particle swarm optimization for attribute
reduction,” inEighth ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, vol. 1, July 2007, pp. 770–775.

[27] T. Desell, “Asynchronous global optimization for massive scale com-
puting,” Ph.D. dissertation, Rensselaer Polytechnic Institute, 2009.

[28] L. Wei and M. Zhao, “A niche hybrid genetic algorithm forglobal op-
timization of continuous multimodal functions,”Applied Mathematics
and Computation, vol. 160, no. 3, pp. 649–661, January 2005.

[29] R. Chelouah and P. Siarry, “Genetic and Nelder-Mead algorithms
hybridized for a more accurate global optimization of continuous
multiminima functions,”European Journal of Operational Research,
vol. 148, no. 2, pp. 335–348, July 2003.

[30] P. Koduru, S. Das, and S. Welch, “A particle swarm optimization-
Nelder Mead hybrid algorithm for balanced exploration and exploita-
tion in multidimensional search space,” inIC-AI, H. R. Arabnia, Ed.
CSREA Press CSREA Press, 2006, pp. 457–464.

[31] Z. G. Wang, M. Rahman, Y. S. Wong, and J. Sun, “Optimization
of multi-pass milling using parallel genetic algorithm and parallel
genetic simulated annealing,”International Journal of Machine Tools
and Manufacture, vol. 45, no. 15, pp. 1726–1734, December 2005.

[32] J. Liu, W. Xu, and J. Sun, “Quantum-behaved particle swarm optimiza-
tion with mutation operator,” inInternational Conference on Tools with
Artificial Intelligence, November 2005.

[33] Z. Dingxue, G. Zhihong, and L. Xinzhi, “An adaptive particle swarm
optimization algorithm and simulation,” inIEEE International Con-
ference on Automation and Logistics, August 2007, pp. 2399–2042.

[34] F. V. D. Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,”IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 225–239, June 2004.


