An Analysis of Massively Distributed Evolutionary Algorithms

Travis Desell, David P. Anderson, Malik Magdon-Ismail, HieNewberg,
Boleslaw K. Szymanski and Carlos A. Varela

Abstract— Computational science is placing new demands on heterogeneity of calculation times. Because of this, tise di
optimization algorithms as the size of data sets and the compu- tributed evolutionary algorithms used must also be retilie

tational complexity of scientific models continue to increase. As to faults and heterogeneous communication and computation
these complex models have many local minima, evolutionary times

algorithms (EAs) are very useful for quickly finding optimal ’))) .
solutions in these challenging search spaces. In addition to the ~ This work discusses different strategies for computing
complex search spaces involved, calculating the objective func- EAs on distributed environments. In particular, sequéntia
tion can be extremely demanding computationally. Because of strategies which require synchronization between suiseess

this, distributed computation is a necessity. In order to address populations are compared to asynchronous strategies ¢hat d

these computational demands, top-end distributed computing h licit d d . A simulation f Ki
systems are surpassing hundreds of thousands of computing not have explicit dependencies. A simulation framework is

hosts; and as in the case of Internet based volunteer computing Used to examine these different distributed EA strategres o
systems, they can also be highly heterogeneous and faulty. various simulated computing environments. A simple homo-
This work examines asynchronous strategies for distributed geneous environment which represents computing clusters
EAs using simulated computing environments. Results show or supercomputers is used to compare the scalability of se-
that asynchronous EAs can scale to hundreds of thousands of . .
computing hosts while being highly resilient to heterogeneous que_nt'al (or par.allel) EAS to asynch_ronlous EAs. A C‘?mpu“”g
and faulty computing environments, something not possible for environment with various communication latencies is used t
traditional distributed EAs which require synchronization. The examine the effect of heterogeneity on asynchronous EAs.
simulation not only provides insight as to how asynchronous | astly, a complex Internet-like distributed computing ienv

EAs perform on distributed computing environments with .,y ment is modeled using data from the MilkyWay@Home
different latencies and heterogeneity, simulation also serves as a . .
volunteer computing projekt

sanity check because live distributed systems require problems

with high computation to communication ratios and traditional Results show that while parallel EAs have difficulty scal-
benchmark problems cannot be used for meaningful analysis ing to massively distributed computing environments, \Whic
due to their short computation time. can have thousands or more computing hosts, asynchronous
EAs scale well to a hundred thousand computing hosts. Ad-
. INTRODUCTION ditionally, asynchronous EAs are shown to reqléssevalu-

Computational science is placing new demands on oﬁl_tions to reach a solution as the heterogeneity of the comput
timization algorithms as the size of data sets and th@9 €nvironmentis increased. Furthermore, results shatv th
computational complexity of scientific models continue tdOF certain benchmark problems on the MilkyWay@Home-
increase. As these complex models have many local minim)k® computing environment, some asynchronous EAs lose
evolutionary algorithms (EAs) are very useful for quick|ythe_ab|llty to fln_d the solution, while others gain the ablll_t
finding optimal solutions in these challenging search spacd® find the solution when they could not on other computing
In addition to the complex search spaces involved, calc@vironments. This is particularly interesting as the fetios
lating the objective function can be extremely demandin§S€d to evolve the population did not change, only the
computationally. In order to address these computatioeal gorder in which the results were received. These results show
mands, top-end distributed computing systems are sur@sthat not only are asynchronous EAs an effective solution to
hundreds of thousands of computing hosts. the problems involved in massively distributed computing,

As the size of computing systems continues to increasQE‘t that there is potential for improving the robustness or

having scalable EAs becomes very important. AdditionallySonvergence rates of EAs by changing the order in which

larger computing systems increase the potential for faullg,/hey process individuals.
computing hosts. In grid computing and especially Internet I
computing, increasing the number of hosts means that hosts
will be spread out farther geographically, increasing the
heterogeneity of communication, and that they will consfst Current popular approaches to global optimization for con-

different architectures and operating systems, increatia tinuous search spaces involve differential evolutionfipiar
swarm optimization and genetic search. In general, individ
Travis Desell, Malik Magdon-Ismail, Boleslaw K. SzymanskiaBarlos ~uals are sets of parameters to an objective function which
A. Varela are with the Department of Computer Sciences, Hetulibérg is s trying to be optimized. Applying the objective functiom t
gg:;:gfhaipﬁg?ﬁﬁ?é'OfTrF;r;%'s,\'l?\,’ﬂ%?ﬂefzi%?'BSSaAr?d AstrondReysselaer o individual provides the fitness of that individual, and th

David P. Anderson is with the U.C. Berkeley Space Sciencémizory,
University of California, Berkeley, Berkeley, Californ4720, USA. Ihttp://milkyway.cs.rpi.edu

EVOLUTIONARY ALGORITHMS FORCONTINUOUS
SEARCH SPACES

to outperform or be competitive with other evolutionary
algorithms and particle swarm optimization [7].

Differential evolution evolves individuals by selecting
pairs of other individuals, calculating their differertiacal-
I —— ing it and then applying it to another parent individual. $om

Q@ kind of recombination €.g, binary or exponential) is then
scaled differential: c(r) - r2)
target: ro + ¢(ri - 12)

scaled differential: ¢(ry - r2) ™\

N O current: pi(t)
@ i

performed between the current individual and the parent
modified by the differentials (see Figure 1). If the fitness
of the generated individual is better than the current indi-
Fig. 1. A two dimensional example of how an individual moves invidual, the current individual is replaced with the new one.
differential evolution. Differential evolution is often described with the follavg
naming convention, “dparenfpairsrecombinatiofy, where

luti lqorith ve individuals th h difiat parent describes how the parent is selectedg(best or
evolutionary algoriihms evove individuais throug @ andom),pairs is the number of pairs used to calculate the

heqr|§t|cs to try_anq find thg best possible fitness, WhIChifferentials, andecombinationis the type of recombination
optimizes the objective function. applied

In general, a new potential individual;(I + 1) for a new
. .) population! + 1 is generated from thé'" individual x;(()
Genetic search is the most classical example of an eV the previous population, and selected if its fitness,

lutionary algorithm. It generates successive populatiohs f(z), is greater than the previous individual:
individuals by applyingselection mutationand recombina-

tion to the individuals in the previous populatio®elec- {

A. Genetic Search

ni(l +1) i f(ni(l+1)) > f(z:(1))

tion selects the best members of the previous population. z;(I+1) = (1) otherwise
Z;

Mutation takes an individual and modifies a parameter at
random. Typically the parameter is mutated to any new The j'» parameter is calculated givenpairs of random
possible value; and a common improvement is do adaptivelidividuals from the populatiot wherer (1) # ... # r(1)?*.
reduce the distance from the original parameter the mutatiy, ¢ and o are the user definegarent scaling factar
can take.Recombinatiortypically takes two individuals as recombination scaling factaandcrossover raterespectively.
parents and generates a child individual by combining thg) is the best individual in the populatidn Two popular
parents’ parameters. However many variants use more thgfxiants are:

two parents [1], [2], [3], [4]. Where thé&" parameter of the « de/best/p/bin

child, ¢;, is generated from thg” parameter of the parents,

pr ... p?, D is the number of parameters in the objective _ 0 p " oh
function, and- is a random number generator, some common (14 1) = bin(z;(1),06(1)] + ¢ Y _[r(1)}* —r(1)3"])
recombination operators are: k=1

« binomial recombinationbin(p*, p?):

(4)

« de/rand/p/bin

pi if r[0,1) <o ori=r(0,D)
G = 2 ; (1) P
p; otherwise
ni(l+1) = bin(:(1), 0r ()] + ¢ D [r(1);* — (D))
« exponential recombinatiorzp(pt, p?): k=1
o pi from r[0,1) < o or i = (0, D) @ ©)
' 7| p? otherwise Which are used in this work. For more detail, Mezura-

Monteset al. have studied many different variants of differ-

. o . .
« simplex recombinationsimplex(p*, ..., p"): ential evolution on a broad range of test functions [8].

ci = POt 4 1(0,1) % (average(p*, ...,p™); — pP°"**) C. Particle Swarm Optimization

3) Particle swarm optimization was initially introduced by
Kennedy and Eberhart [9], [10] and is a population based
global optimization method based on biological swarm in-

Differential evolution is an evolutionary algorithm usedtelligence, such as bird flocking, fish schooling, etc. This

for continuous search spaces developed by Storn and Prmgproach consists of a population of particles, which “fly”
over 1994-1995 [5]. Unlike other evolutionary algorithmsthrough the search space based on their previous velocity,
it does not use a binary encoding strategy or a probabilityeir individual best found position (cognitive intelligee)
density function to adapt its parameters, instead it per$or and the global best found position (social intelligenceyoT
mutations based on the distribution of its population [€]r F user defined constants, andc,, allow modification of the

a wide range of benchmark functions, it has been showralance between local (cognitive) and global (social) &ear

B. Differential Evolution

shown that super-linear speedup can be attained using this

e method, as smaller populations can converge to minima
quicker than larger populations [20], [21]. However, hayvin
vl e . populations of different sizes and/or populations runriing
clusters of different speeds can have varying negativetsffe
on the performance of the search. As each island can be
parallelized in the same manner as a single population EA,
this approach is well suited to grid computing systems, eher
islands can be assigned to individual clusters within the. gr
Island EAs have also been used in peer-to-peer computing
systems [22].

C. Asynchronous Approaches

Fig. 2. A two Qimensional example of how a particle moves in pkati Asynchronous approaches to distributed EAs typically use
swarm optimization. . .
a single-population and a master-worker model. One ap-
proach is to generate the population and have workers reques

Later, an inertia weight: was added to the method by Shiindividuals to evaluate, using a work-stealing model [23],

and Eberhart to balance the local and global search catgabil[zs]' M_ar:j)_/ _prlroachgsl o particlfz slwa:jm_ use a”rr?ethczjd
of PSO [11] and is used in this work and by most moder}/N€re Individual particles are calculated In parallel an

PSO implementations. The population of particles is upijatr;nﬁv"Iy foulnd global hest positions are.trr]\en. brloadcaslt asyn-
iteratively as follows, where: is the position of the particle chronously [25], [26]. However, as with single-population

at iterationt, v is it's velocity, p is the individual best for sequenFiaI qpproaches these strategies are limited by the
that particle, and is the global best position (Figure 2 showspOpUI"’V[Ion size used by the EA.

how a single particle can move in two dimensions): In order tp overcome the_ scalability limitations presented
by these different strategies, the authors have developed

asynchronous optimization, a strategy which is not limited

vit+1) = wxv(t) in scalability [27], [4]. Similar to steady state genetiaseh,
+erxrand() * (pi — 2i(t)) (7) Which generates one individual at a time and uses it to
g xrand() x (gi — 2i(t)) monotonically update a population; asynchronous optimiza
zi(t+1) = z(t) +ui(t+1) tion generates new individuals based on a populationsmurre
1. DISTRIBUTED EVOLUTIONARY ALGORITHMS state in response to requests for work and later inserts the

results to the population when and if they are reported. As
r%ﬁe heuristics for generating new individuals in the diseas

EAs work on different distributed computing systems. | . . !
iEAs are randomized, this allows asynchronous evolutionary
general these approaches are either sequential, witnaisti) . L
algorithms to generate as many unique individual as are

synchronization points, or asynchronous, without distinc . X .
Y 1zation po y required to satisfy all potential workers. There are also no
synchronization points.

dependencies between generated individuals, so if a worker
A. Sequential Approaches fails and does not report the fitness of its individual, the

Sequential approaches to distributed EAs typically US%e(?;ﬁ:rLI;tZZS not need to wait for that individual to be

a single-population strategy, where new populations alé
generated repeatedly by evaluating each individual in par-
allel; repeating this process until the population hashedc
convergence criteria [12], [13]. It is possible to increase In order to test the effect of different distributed com-
scalability past the population size by additionally esdilug puting platforms and their size on the convergence rates of
the objective function in parallel. This type of approach iglifferent EAs, a simulation environment was developedsThi
best suited to highly reliable and homogeneous computirgnvironment can simulate heterogeneity and failures, evhil

There have been many different approaches to maki

IV. SIMULATION FRAMEWORK

nodes, as found in clusters and supercomputers. quickly evaluating different search methods using various
. benchmark functions. The simulated computing environment
B. Hybrid Approaches requests parameter sets to be evaluated then returns those

Hybrid approaches involvéslands of populations [14]. results after a simulated amount of time (or not at all). In
The different populations are evaluated sequentially Brd t addition to testing the search methods on functions known to
asynchronously migrate selected individuals to neighgpri be difficult to find a global optimum for, this also provides a
islands when certain criteria are met [15], [16], [17], [18] method to evaluate the effect of asynchrony in a controlled
Tasoulis et al. have shown that having moderate valuegnvironment,e.g, the number of updates to the population
for migration result in the best convergence for differanti that occur before the result of a parameter set is reported ca
evolution across a variety of benchmarks [19]. It has bedme generated through different probability distributicarsd

Faults require the initial worker to error out and then have
the same work sent to a different worker.

Workers (Fitness Evaluation)

Min Heap (Report Times)

Reg

V. RESULTS

The simulation environment was used to compare the
asynchronous EA strategy to the basic single population
evolutionary algorithm strategy. While the island stratedy
distribution is a popular one, the authors feel that in some
il sense it is independent of actually making an evolutionary
e it algorithm parallel. For example, many hybrid strategies us
. multiple populations oneighborhoodstrategies which divide
populations into distinct subpopulations, without anynficsf

Fig. 3. The simulated evaluation framework. A simulated emrtent distribution [28], [29], [2], [30], [31]. Asynchronous EAs

is used instead of different distributed computing environtaeComputed and parallel EAs are more primitive to the diStribUtiO_n
results are stored in a heap and inserted into the populiatiorder of their ~ problem, as each island population can be evolved using

simulated report time. either. Additionally, island style EAs can be performed by
asynchronous EAs, by subdividing the population serves.sid

the minimum and maximum update times for parameter sefs Optimization Parameters

can be fixed. _ _ For genetic search, a mutation rate)df was used, and the
The simulation framework consists of two basic partssimplex recombination method was used, with= —1.5,

The first allows users to specify templates which control thg, — 1.5 and 2 parents (previous work has shown this

amount of asynchrony and fault rates in the system. Usef§ outperform other recombination operators [27]). Phatic

can specify the amount of time it takes for results to b&@warm used an inertia weight; = 0.5, ande; = ¢ =

calculated and the number of faults that occur. The amounty, Differential evolution used binomial recombination with

of time it takes for a result to be calculated is probabtisti gjther best or random parent selection, one pair, a recombi-

specifying the percentage chance for a result to take thgtion scale of).5 and a recombination rate 6f5.
time between a minimum and maximum given time and

a probabilistic distribution function. Currently, uniforand B. Test Functions
gamma distributions are implemented. The gamma distribu- The Ackley, Griewank, Rastrigin, Rosenbrock and Sphere
tion was chosen because it typically is used to model waitingroblems were used as benchmark optimization problems,
times, which is ideal for this type of simulation. Multiple which are described in detail in various other work [27],]j32
distributions can be used, which is important in modeling33], [34]. The Ackley and Sphere problems usklisearch
grid and Internet-like environments which may have différe parameters, and the Griewank, Rastigin and Rosenbrock
result time distributions if different types of hardwaresar problems used search parameters. A solution was assumed
used. to be reached when the fithess of best member in the
The other part is the simulated evaluation environmemopulation was less than0—'°, and the results presented
(see Figure 3). The simulations run with a specified numbeire the average of 20 different searches.
of workers, allowing the size of the simulated computing .)
environment to be modified. A heap is used to handi- Simulated Environments
results that are currently being calculated by the simdlate Three different simulated computing environment types
environment. This allows insert and removal of results tthomogeneous, heterogeneous and internet-like) were used
be done inO(log(n)) time. The heap is initially populated to examine the effects of heterogeneity and the scalaluifity
with a number of results equal to the number of workerasynchronous EAs and parallel EAs.
and each is given a report time (trip time plus calculation 1) Homogeneous Environment3he simulated homoge-
time) that is calculated using the specified distributioms ineous environment models computing on a cluster, super-
the simulation template. If a result is determined to betjaul computer or even a graphical processing unit (GPU), where
another trip and calculation time are generated, and this g@mputation time and latency on the distributed processors
repeated until the result is determined to be non-faulty an@r threads) is uniform. This type of computing environment
the result time is the sum of all generated computation angas simply modeled by using a fixed result report time
trip times. Following this, the minimum value is removedof 1 was used. The number of parallel computing hosts
from the heap and inserted into the search and the currarged was increased froi0 to 100,000. As parallel EAs
simulation time is set to the report time of that result. A newequire a population size equal to the amount of computing
result is then generated with a new report time, which ibosts, the population size of the parallel EAs was increased
the current time plus the result calculation time, and #egker accordingly. Asynchronous EAs have no such limitation, so
into the heap. This essentially simulates workers requgsti a fixed population size of00 was used for all amounts of
new result, calculating the result and sending it to theeserv computing hosts, however for the Rastrigin and Rosenbrock

Simulated Computing Hosts

100 | 1000 | 10000 100000

Ackley
PGS 169.76 345.37 380.47 N/A
AGS 169.76 45.23 18.18 10.57
Speedup 0 7.66 21.11 N/A
PPSO 128.13 76.04 36.18 27.47
APSO 128.13 19.63 9.49 6.72
Speedup 0 3.87 3.81 4.08
PDE/best N/A 61.41 33.34 21.30
ADE/best N/A 61.41 13.17 7.53
Speedup N/A 0 2.53 2.83
PDE/rand 85.74 123.44 164.72 186.69
ADE/rand 85.74 25.38 10.81 6.51
Speedup 0 4.86 15.23 28.67

Griewank
PGS 15498.63| 11720.21] 8752.28 N/A
AGS 15498.63| 1545.68 214.19 52.96
Speedup 0 7.58 40.89 N/A
PDE/rand | 1109.67] 1379.61] 1414.353]| 1415571
ADEfrand | 1109.67 142.16 39.636 18.557
Speedup 0 9.71 35.67 76.28

Rastrigin
PGS 9458.45 666.64 585.84 N/A
AGS 9458.45 132.86 40.60 21.42
Speedup 0 5.02 14.4 N/A
PPSO 285.76 180.52 88.85 68.59
APSO 285.76 45.00 18.51 11.17
Speedup 0 4.01 4.80 6.14
PDE/best N/A 70.44 65.95 56.93
ADE/best N/A 70.44 26.64 14.47
Speedup N/A 0 2.47 3.93
PDE/rand 603.37 876.09 915.63 908.44
ADE/rand 603.37 107.33 32.30 16.25
Speedup 0 8.18 28.33 55.87

Rosenbrock

PPSO 21182.11] 7940.44 910.84 121.52
APSO 21182.14| 2464.42 691.08 257.89
Speedup 0 3.22 1.32 0.47
PDE/best N/A 58.48 53.01 50.25
ADE/best N/A 58.48 25.02 16.53
Speedup N/A 0 2.12 3.13
PDE/rand 243.19 212.68 202.89 199.07
ADE/rand 243.19 56.94 25.94 15.78
Speedup 0 3.73 8.08 12.59

Sphere
PGS 20911.79] 15329.22[12811.55| 12019.73
AGS 20911.79| 2074.40 263.94 75.07
Speedup 0 7.39 48.71 160.25
PPSO 300.68 221.32 174.10 142.78
APSO 300.68 65.38 30.97 20.99
Speedup 0 3.38 5.61 7.1
PDE/best 77.97 69.06 63.79 59.16
ADE/best 77.97 37.66 24.72 19.93
Speedup 0 1.86 2.6 3.10
PDE/rand 372.29 434.41 436.33 434.02
ADE/rand 372.29 98.58 46.60 28.70
Speedup 0 4.40 9.36 15.12

Fig. 4. Average number of iterations to solution for asynalois EA and
parallel EA strategies for different benchmark problems.r$yonous EAs
used a fixed population size aD0, except for ADE/best on the Ackley,
Rastrigin and Rosenbrock problems, which required a papulatize of
1000. The parallel EAs used a population size equal to the surob

processors.

problems a population size daf0 was insufficient to solve
the problem so a population size bf000 was used.

Figure 4 shows the number of iterations taken to reach a
solution, where an iteration consists of sending a work to
each computing host and the receiving those results. It is
important to note that increasing the population size of a
parallel EA to account for the amount of computing hosts
can actually increase the time to a solution, as in the case of
parallel differential evolution with random parent seiect
(PDE/random) for the Rastrigin problem. And in many other
cases, increasing the population size to match the amount
of computing hosts for the parallel EAs has no noticeable
improvement to the time to solution. Of all the parallel EAs,
parallel particle swarm optimization (PPSO) seemed to be th
most resilient to increasing the population size to mateh th
number of computing hosts, often showing improved time to
solution. On the other hand, using asynchronous EAs always
resulted in improved time to convergence as the number of
computing hosts was increased.

2) Heterogeneous EnvironmentBarallel EAs are poorly
suited to heterogeneous environments, as they have to wait
for the slowest computing host to calculate the fitness of its
individual before they can progress to generating and eval-
uating the next population. Asynchronous EAs do not have
any dependencies however, so they are better suited to these
types of computing environments. A simple heterogeneous
environment was used to evaluate the effect of heterogeneit
on asynchronous EAs. A fixed compute timelofvas used,
and the range of possible communication times was increased
from (0,1] to (0,1000]. Communication times were generated
uniformly across the possible range. All the tests used d fixe
number of10, 000 simulated computing hosts and population
sizes 0f100 unless otherwise noted.

Figure 5 shows the number of evaluations taken to reach a
solution for the different benchmark problems on simulated
heterogeneous environments. While parallel EAs would re-
quire the same number of evaluations to reach the solution
as heterogeneity does not effect the order in which results
are used to generate subsequent populations; asynchronous
EAs requiredless evaluations to reach a solution as the
heterogeneity increased. For some searches this efferethp
off after reaching a certain result report time range, h@awvev
in general further heterogeneity did not begin to increase t
number of evaluations taken to reach a solution.

3) Internet-like Environmentsin order to test the scala-
bility of asynchronous EAs on more realistic and massively
distributed heterogeneous environments, the time to tepor
sults were examined using data from the MilkyWay@Home
project. Figure 6 shows the frequency of report times for a
sample of10, 000 results reported to the MilkkyWay@Home
server. The different results were separated into both GPU
and CPU results, as GPUs can perform the calculation orders
of magnitude faster than CPUs. The result report time is the
time it took from the moment a parameter set was generated
to the time the parameter set was reported with a result
and inserted into the search population. The differenttgoin

200000

150000 O_\——%

100000

Evaluations to Solution Evaluations to Solution

Evaluations to Solution

50000

100000 < acs

Ackley - Heterogeneous Environment

< AGS

& APSO
ADE/best

© ADEfrandom

0

1000

Communication Time Range

Griewank - Heterogeneous Environment

800000 \—o_o__o
600000

400000 °\o\c G
i

2000004 ags

0 APSO
ADE/best
OO ADE/random

1 10 100

Communication Time Range

1000 10000

Rastrigin - Heterogeneous Environment

400000 0\—6\0——’0\0
300000 q‘\o\c
— 0

200000

— o

o APSO
ADEfbest
g O ADEfrandom
1 10 100

Communication Time Range

1000 10000

Rosenbrock - Heterogeneous Environment

10,000,000

Evaluations to Solution

EN:P-__%E o o

1,000,000

<« AGS

O APSO
ADE/best

© ADE/random

°\o\c e

400000

Evaluations to Solution

Fig. 5.

300000

200000

—
100,000
1 10 100 1000 10000
Communication Time Range
Sphere - Heterogeneous Environment
—- ¢ —

100000 25 pps

o APSO
ADE/best
0 2 ADE/random

1 10 100

Communication Time Range

Number of evaluations to solution for asynchronouss Eox

simulated heterogeneous environments. A fixed compute timhenvafs used,
and communication times were generated uniformly and randontiyeles
0 and the given range.

MilkyWay@Home Result Time Frequency

— CPU frequency
— gamma(2,12000)

GPU frequency
— gamma(3,1000)

3 0.0002

=

[}

=]

o

(5}

T 0.0001

0.0001 |
0 i A AM \ L A
0 5500 11000 16500 22000 27500 33000 38500 44000 49500
Result Round Trip Time (seconds)
Fig. 6. Frequency of time taken to download, calculate andrteesults

to the MilkyWay@Home server for GPU and CPU processors.

on the chart were found by calculating the frequency of a
result being reported in 250 second bins, and dividing this
frequency by the total number of data points and the bin size.

It was possible to fit the frequency GPU and CPU result
times using the gamma distribution (see Equation 8), which
is commonly used in probability to model waiting times. The
gamma distribution function for a random variahletakes
two positive input parameters, a shape parametand an
inverse scale parametgr

gamma(z; o, 8) = Fﬁ(z)xo‘le’% (8)
') = (a— 1), if ais a positive integer 9)

Figure 6 shows the gamma distributions used to model
the GPU and CPU wait times. These gamma distributions
were used to randomly generate result times. As bo#nd
(8 were integers, random result times could be generated as
follows:

randgamma(a,8) = %Ef‘:l(ln U;) (20)
Where U; are all uniformly distributed on (0,1] and
independent. As 40% of the results received by Milky-
Way@Home were GPU results, the simulation generated
result report times usingamma(3,1000) 40% of the time

and with gamma(2, 12000) otherwise.

Figure 7 shows the simulated time to solution for asyn-
chronous EAs on a MilkyWay@Home-like computing envi-
ronment, as the number of computing host increases from
100 to 100, 000. For all benchmark problems, as the number
of simulated computing hosts increased the time to solution
decreased, which is a promising result because it shows that
in a more realistic environment, asynchronous EAs stillesca
well to very large environments. A population size 1f0
was used for all searches.

Ackley - Internet Environment

10000000

- AGS

o APSO
ADE/best

=
o © ADE/random
£ 1000000 ’\Q’\\
2 .
£
g 100000
E
10000
100 1000 10000 100000
Simulated Computing Hosts
Griewank - Internet Environment
100,000,000 & AGS
O APSO
ADE/best
5 10‘000‘000 © ADE/random
5
3
9 1,000,000
£
E 100,000
10,000
100 1000 10000 100000
Simulated Computing Hosts
Rastrigin - Internet Environment
100000000 + AGS
O APSO
ADE/best
5 10000000 0 © ADE’random
=1 L
3
° 1000000
£
g 100000 ——
B ™ |
10000
100 1000 10000 100000
Simulated Computing Hosts
Rosenbrock - Internet Environment
1,000,000,000 < AGS
w— O APSO
O ADE/best
< 100,000,000 S O ADE/random
S -
2 10,000,000
w
o
= 1,000,000
E
L 100,000
10,000
100 1000 10000 100000
Simulated Computing Hosts
Sphere - Internet Environment
10,000,000
- < AGS
O APSO
[=4 ADE/best
o © ADE/random
£ 1,000,000
]
w
£
E 100,000 —
S =]
10,000
100 1000 10000 100000
Simulated Computing Hosts
Fig. 7. Simulated time to solution for asynchronous EAs on a kitad

internet-like environment for the different benchmark pevbs.

Interestingly, ADE/best, which could not solve the Rastri-
gin test function with a population size @00 on a homo-
geneous environment or with smaller numbers of simulated
computing hosts, was able to solve the test function when
the number of workers increased @0, 000. Not only could
it solve the problem, but found solutions in less time than
the other EAs that were used. Another unexpected result
is that while AGS could solve the Sphere and Griewank
problems in both the simulated homogeneous and simple het-
erogeneous environments, it could not solve the test foncti
in a MilkyWay@Home-like environment. This is especially
interesting in that the Sphere function is well defined and
supposedly easy to solve as there is only a single minimum.
These results seem to indicate that a realistic heterogeneo
environment may harm the exploitative ability of AGS.

VI. CONCLUSIONS

This work presents different strategies for distributed-ev
lutionary algorithms (EAs). A simulation framework is used
to evaluate the performance of different EAs on various
distributed computing systems. In addition to using sim-
ple simulated homogeneous and heterogeneous computing
environments, data from the MilkyWay@Home volunteer
computing projeé is used to simulate an actual Internet-
like distributed computing environment with thousands of
heterogeneous hosts. It is shown that using an asynchronous
strategy over a sequential strategy can greatly increase th
scalability of an evolutionary algorithms. Traditionabjsen-
tial distributed computing strategies are shown to not joie@v
any improvement or can even increase the time to solution.
Additionally, the asynchronous strategy presented is show
to be resilient to faults and highly heterogeneous computin
environments, even taking less evaluations to reach aiolut
as the heterogeneity increases.

The EAs examined in this work only consist of single
population strategies as these are seen as a more primitive
problem which can be applied to multi-population (or island
strategies. As island strategies have been shown to paltgnti
provide super-linear speed speed up [20], [21], future work
would involve analyzing asynchronous EAs within islands
on large and heterogeneous computing environments. Addi-
tionally, the MilkyWay@Home-like computing environment
generated interesting results where certain EAs stopped be
able to find the solution to benchmark problems, while
others gained the ability to find the solution to benchmark
problems they otherwise could not solve. This is partidular
interesting considering that the heuristics used to gémera
new children did not change, only the order in which the
results were received was changed. This provides a prognisin
area for further research as to the effect of heterogeneity o
distributed EAs.

As computing environments continue to become more
distributed and heterogeneous, results from this work show
that using an asynchronous strategy for distributed EAs

2http://milkyway.cs.rpi.edu

can provide significant benefits in terms of scalability angte)
resilience to heterogeneity and faults.

ACKNOWLEDGMENT [17]

Special thanks go to the Marvin Clan, David Glogau,
and the Dudley Observatory for their generous donatiori$s]
to the MilkyWay@Home project, as well as the thousands
of volunteers that made this data used in this work fg
possibility. This work has been partially supported by the
National Science Foundation under Grant Numbers 06122

D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee, “Effint
hierarchical parallel genetic algorithms using grid computi Future
Generation Computer System®l. 23, pp. 658-670, May 2007.

T. Peachey, D. Abramson, and A. Lewis, “Model optimizatiand
parameter estimation with Nimrod/o,” iimternational Conference on
Computational SciencéJniversity of Reading, UK, May 2006.

A. Lewis and D. Abramson, “An evolutionary programming @iighm
for multi-objective optimisation,” iNEEE Congress on Evolutionary
Computation (CEC2003)ol. 3, December 2003, pp. 1926-1932.
D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, andMW.Vrahatis,
“Parallel differential evolution,” inCongress on Evolutionary Compu-
tation 2004 (CEC2004)vol. 2, June 2004, pp. 2023-2029.

| E. Alba and J. M. Troya, “Analyzing synchronous and adyonous

0607618, 0448407 and 0947637. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect 1!

views of the National Science Foundation.

REFERENCES [22]

[1] J. Yen, J. C. Liao, B. Lee, and D. Randolph, “A hybrid apmb to
modeling metabolic systems using a genetic algorithm and simple[23]
method,”|IEEE Transactions on Systems, Man and Cybernetics, Part
B, vol. 29, no. 2, pp. 173-191, April 1998.

[2] S. C. Satapathy, J. Murthy, P. Prasada, V. Katari, S. idddi, and [24]
V. S. Kollisetty, “An efficient hybrid algorithm for data cétering using
improved genetic algorithm and nelder mead simplex searchiji-in
ternational Conference on Computational Intelligence &hdtimedia
Applications vol. 1, December 2007, pp. 498-510. [25]

[3] V. Katari, S. C. Satapathy, J. Murthy, and P. P. Reddy, bHgized
improved genetic algorithm with variable length chromosome fo
image clustering,JJCSNS International Journal of COmputer Science
and Network Securityol. 7, no. 11, pp. 121-131, November 2007. [26]

[4] T. Desell, B. Szymanski, and C. Varela, “An asynchronoysbriu

genetic-simplex search for modeling the milky way galaxy using

volunteer computing,” irGenetic and Evolutionary Computation Con-

ference Atlanta, Georgia, July 2008. 27]

R. Storn and K. Price, “Minimizing the real functions ofethCEC’'96

contest by differential evolution,” ifProceedings of the IEEE Interna- [28]

tional Conference on Evolutionary Computatiddagoya, Japan, 1996,

pp. 842-844.

(3]

[6] H.-P. SchwefelEvolution and Optimization SeekingNew York: John [29]
Wiley & Sons, 1995.

[7] J. Vesterstrom and R. Thomsen, “A comparative study ofedftial
evolution, particle swarm optimization, and evolutionatgagithms
on numerical benchmark problems,” i@ongress on Evolutionary [30]

Computation 2004 (CEC2004yol. 2, June 2004, pp. 1980-1987.

E. Mezura-Montes, J. Velzquez-Reyes, and C. A. C. Coelfo

comparative study of differential evolution variants foolgal opti-

mization,” in Proceedings of the 8th Annual Conference on Geneti¢31]

and Evolutionary Computatior2006, pp. 485-492.

[9] J. Kennedy and R. C. Eberhart, “Particle swarm optim@atiin IEEE

International Conference on Neural Networksl. 4, 1995, pp. 1942—

1948. [32]

R. C. Eberhart and J. Kennedy, “A new optimizer using ipket

swarm theory,” inSixth International Symposium on Micromachine

and Human Scien¢e 995, pp. 33-43.

Y. Shi and R. C. Eberhart, “A modified particle swarm optiet” in

IEEE World Congress on Computational Intelligendéay 1998, pp.

69-73. [34]

J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftemd A. D.

George, “Parallel global optimization with the particle smaalgo-

rithm,” International Journal for Numerical Methods in Engineagjn

vol. 61, no. 13, pp. 2296-2315, December 2004.

S. Baskar, A. Alphones, and P. N. Suganthan, “Conctr80

and FDR-PSO based reconfigurable phase-differentiatethiaatarray

design,” inCongress on Evolutionary Computatjorol. 2, June 2004,

pp. 2173-2179.

E. Cantu-Paz, “A survey of parallel genetic algoritiinSalculateurs

Paralleles, Reseaux et Systems Repaviié. 10, no. 2, pp. 141-171,

1998.

[15] H. Imade, R. Morishita, I. Ono, N. Ono, and M. Okamoto, “A
grid-oriented genetic algorithm framework for bioinforneati’ New
Generation Computing: Grid Systems for Life Scienses. 22, pp.
177-186, January 2004.

(8]

(20]

(11]

(12]

[13]

(14]

parallel distributed genetic algorithmd7uture Generation Computer
Systemsvol. 17, pp. 451-465, January 2001.

J. Berntsson and M. Tang, “A convergence model for assyorabus
parallel genetic algorithms,” ifEEE Congress on Evolutionary Com-
putation (CEC2003)vol. 4, December 2003, pp. 2627-2634.

G. Folino, A. Forestiero, and G. Spezzano, “A JXTA bassyn-
chronous peer-to-peer implementation of genetic programimaogr-
nal of Softwarevol. 1, pp. 12-23, August 2006.

B.-l. Koh, A. D. George, and R. T. Haftka, “Parallel asfmonous
particle swarm optimization,’International Journal of Numerical
Methods in Engineeringvol. 67, no. 4, pp. 578-595, July 2006.

G. Venter and J. Sobieszczanski-Sobieski, “A pargilatticle swarm
optimization algorithm accelerated by asynchronous evials” in
Sixth World Congresses of Structural and Multidisciplipn@®ptimiza-
tion, May 2005, pp. 1-10.

J. R. Prez and J. Basterrechea, “Particle swarms appdiedrray
synthesis and planar near-field antenna measuremeéviisfowave
and Optical Technology Lettersol. 50, no. 2, pp. 544-548, February
2008.

L. Xu and F. Zhang, “Parallel particle swarm optimizatifor attribute
reduction,” inEighth ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and ParalliDistributed
Computing vol. 1, July 2007, pp. 770-775.

T. Desell, “Asynchronous global optimization for masgsiscale com-
puting,” Ph.D. dissertation, Rensselaer Polytechnicitlrtst 2009.

L. Wei and M. Zhao, “A niche hybrid genetic algorithm fgtobal op-
timization of continuous multimodal functions®pplied Mathematics
and Computationvol. 160, no. 3, pp. 649-661, January 2005.

R. Chelouah and P. Siarry, “Genetic and Nelder-Meadritlgms
hybridized for a more accurate global optimization of corbinsi
multiminima functions,”European Journal of Operational Research
vol. 148, no. 2, pp. 335-348, July 2003.

P. Koduru, S. Das, and S. Welch, “A particle swarm optaian-
Nelder Mead hybrid algorithm for balanced exploration arpl@ita-
tion in multidimensional search space,” i@-Al, H. R. Arabnia, Ed.
CSREA Press CSREA Press, 2006, pp. 457-464.

Z. G. Wang, M. Rahman, Y. S. Wong, and J. Sun, “Optimization
of multi-pass milling using parallel genetic algorithm andrgikel
genetic simulated annealindfiternational Journal of Machine Tools
and Manufacturevol. 45, no. 15, pp. 1726-1734, December 2005.
J. Liu, W. Xu, and J. Sun, “Quantum-behaved particle savaptimiza-
tion with mutation operator,” itnternational Conference on Tools with
Artificial Intelligence November 2005.

3] Z. Dingxue, G. Zhihong, and L. Xinzhi, “An adaptive paté swarm

optimization algorithm and simulation,” itEEE International Con-
ference on Automation and Logistiodugust 2007, pp. 2399-2042.
F. V. D. Bergh and A. P. Engelbrecht, “A cooperative agmh
to particle swarm optimizationJEEE Transactions on Evolutionary
Computation vol. 8, no. 3, pp. 225-239, June 2004.

