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Abstract—This work describes research done by the Milky-
Way@Home project to use N-Body simulations to model the
formation of the Milky Way Galaxy’s halo. While there have
been previous efforts to use N-Body simulations to perform
astronomical modeling, to our knowledge this is the first to
use evolutionary algorithms to discover the initial parameters
to the N-Body simulations so that they accurately model
astronomical data. Performing a single 32,000 body simulation
can take up to 200 hours on a typical processor, with an
average of 15 hours. As optimizing the input parameters to
these N-Body simulations typically takes at least 30,000 or
more simulations, this work is made possible by utilizing the
computing power of the 35,000 volunteered hosts at the Milky-
Way@Home project, which are currently providing around
800 teraFLOPS. This work also describes improvements to
an open-source framework for generic distributed optimization
(FGDO), which provide more efficient validation in performing
these evolutionary algorithms in conjunction the Berkeley Open
Infrastructure for Network Computing (BOINC).
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whythey are there. This work addresses these deficiencies by
using N-body simulations to model this tidal disruption of
dwarf galaxies and their interaction with the Milky Way. The
disruption depends on initial properties of the dwarf gglax
and on the gravitational potential of the Milky Way, which
is primarily due to dark matter. Asynchronous evolutionary
algorithms (AEAs) have been used successfully to find
the optimal input parameters for the probabilistic sangplin
method [3], [4], [3], [5], [6], and this work expands these
AEAs to find the optimal input parameters for the N-body
simulations, which will in turn provide new understanding
of the origin and structure of the Milky Way.

Successfully evolving these N-body simulations using
a volunteer computing system such as MilkyWay@Home
involved three main challenges. First, as volunteer com-
puting systems consist of highly heterogeneous hosts with

unreliable availability, that are potentially malicioexisting
N-body simulation code had to be modified to enable check-
pointing so applications can stop and restart and proviee th
MilkywWay@Home has used a probabilistic sampling same results across multiple platforms. Second, as the N-
method to measure the shape of stellar substructure in theody simulation code is the second real scientific appbeati
Milky Way, primarily from tidal streams stars that have being optimized using FGDO, this work has made steps
been tidally stripped from dwarf galaxies as they are pulledo improve the generality and usability of that framework.
apart by the Milky Way’s gravity [1], [2]. This method Further, the validation strategy used by FGDO has been
simultaneously fits a smooth component of the Milky Way’s updated, improving its robustness while reducing valatati
stellar halo that is presumably the result of galaxy mergersverhead. Lastly, a method for determining how accurately
that occurred early in the formation of the Milky Way, along an N-body simulation represents astronomical data gathere
with these disrupted dwarf galaxy stars around the entirdy various sky surveys, such as the Two Micron All Sky
galaxy. Since the Milky Way galaxy is the only galaxy for Survey (2MASS) [7] and the Sloan Digital Sky Survey
which it is possible to measure the positions and velocitiefSDSS) [8], was required so that their fitness could be
of stars in three dimensions, our galaxy provides importanbptimized by the AEAs.
clues to the mechanisms through which galaxies form and These N-body simulations are extremely computationally
the nature of dark matter. expensive as a single 32,000 particle simulation can take up
However, this approach has some limitations. As anto 200 hours on a standard processor. The massive amounts
accurate model of the smooth component (orithekground  of computing power produced by the volunteer computing
mode) is unknown, models of the disrupted dwarf galaxy hosts at MilkyWay@Home provide one of the few com-
stars can end up fitting errors in the background modelputing systems where performing such optimization in a
Additionally, the models generated from this approach onlyrealistic amount of time is possible. Preliminary resultevg
provide information abouvherethese tidal streams are, not that for a test data set with known optimal parameters, the

I. INTRODUCTION



35,000 volunteered computing hosts at MilkyWay@Homepositions of the Sagittarius stream within an axisymmetric
can be successfully harnessed to evolve 4,096 and 32,7@krk matter halo. Only by expanding to a triaxial halo did
particle N-body simulations to accurately model the Milky Law & Majewski [21] satisfy all constraints. Predating this
Way Galaxy and the formation of structure in its halo. work, Dehnenet al. [22] modeled the Palomar 5 globular
Further, the FGDO framework is now successfully beingcluster tidal stream via N-body simulations and showed
used to optimize 32,768 particle N-body simulations to reakhat the majority of its properties were results of its abit
observed data from the SDSS. kinematics. Similar studies of the GD-1 (Grillmair & Dion-
atos [23] stellar stream by Wille#t al. [24] and Koposov

et al. [25] were able to determine orbital kinematics, but did
A. Distributed Evolutionary Algorithms not perform N-body simulations.

Evolutionary algorithms (EAs) are a popular approach While these studies were groundbreaking in their ability
for parameter optimization where the search space contairi§ constrain tidal streams, they did not address the inter-
many local optima that traditional search methods such agsting research question: can N-body simulations be used
gradient descent and simplex get trapped in. As the seard® rigorously fit the stellar density along a tidal stream?
space for these N-body simulations is highly complex,Newberget al. [26] published a re-analysis of the Orphan
EAs are an ideal candidate for performing the parametebtream (Belokuroet al. [27], Grillmair [28]), and extracted
optimization. the density of Orphan Stream F-turnoff stars as a function

Common EAs for continuous search spaces include difof Orphan Stream longitudé o, phan, Which is shown in
ferential evolution (DE) [9], particle swarm optimization Figure 1. Newberget al. [26] were able to reproduce the
(PSO) [10] and genetic search (GS). In general, an EA keepgverall form of the Orphan density using a Plummer model
track of anpopulation of potential solutions, where each With mass Mp = 2 x 10° Ms., (where Mg, is the
individual in the population represents a set of parametergnass of the sun), scale length = 0.2 kpc (kiloparsecs),
in the search space and haditaessthat represents how orbit time ty.ac = 4 Gyr (gigayears) and evolution time
good of a solution that individual is. As the EA progresses,tback = 3.945 Gyr, evolved along the best fit orbit within
new individuals are generated by recombining individualsa Galactic potential. While these parameters produce a
in the current population, and those with higher fitnessegnodel that broadly reproduces the Orphan Stream density, an
are kept while those with lower fitnesses are discarded. Aiteresting research question emerges: can an N-body model
the generation of new individuals involves random elementsof the Orphan Stream progenitor actually be fit to the Orphan
newly generated individuals have the potential to bexh  Stream density?
plore new regions of the search space, axgploit areas of
the search space that are known to have good fithess. This
results in the population of solutions evolving towards an
optimal solution. The scientific purpose of this work is to utilize the BOINC

There have been many different approaches to makinyolunteer computing environment to perform distributed
EAs work on different distributed computing systems. Ingravitational N-body simulations of dwarf galaxies onbgi
general these approaches are either sequential [11], [12Zhe Milky Way. A dwarf galaxy is a small spherical galaxy
with distinct synchronization points; partially asynchoms, that typically possesses millions of stars and has a mass
with few distinct synchronization points [13], [14]; or hy- on the order of one ten-thousandth of the Milky Way’s
brid methods [15], [16], [17], [18], [19]. FGDO supports Mass. As it orbits our Galaxy, it becomes disrupted by
fully asynchronous versions of differential evolutionrtile ~ gravity and forms tidal streams: long arms of stars that can
swarm optimization and genetic search, which differ fromspan the entire sky. Utilizing massive and well calibrated
previous approaches as they remove all explicit synchrophotometric surveys such as the Two Micron All Sky Survey
nization points. This allows these optimization methods to(2MASS) [7] and the Sloan Digital Sky Survey (SDSS) [8],
scale to hundreds of thousands or more computing host@stronomers have identified tens of streams orbiting the
as shown by Desell [4], making them ideally suited for Milky Way. Figure 1 shows a stellar density map of SDSS F-

Il. RELATED WORK

IIl. M ODELING THE MILKY WAY GALAXY USING
N-BODY SIMULATIONS

volunteer computing. turnoff stars in the Milky Way halo from [26]. Darker areas
] ) . . . indicate higher stellar density. There are two tidal stream
B. N-Body Simulations in Astroinformatics in this Figure. The first runs nearly vertically froha= 200°

N-body simulations are a well established tool for model-to [ = 240°. This is the Sagittarius Dwarf Tidal Stream.
ing tidal disruption in the Milky Way. The Sagittarius Dwarf The other, running horizontally dt ~ 50°, is the Orphan
Tidal Stream was initially modeled by Johnstehal. [20], Stream.
and followed up by Lawet al. [7]. While this placed some The physical problem in understanding tidal streams is
constraints on the kinematics of the Sagittarius dwarf, eaw that they represent the disordered state of the original
al. were unable to simultaneously fit the kinematics and skydwarf galaxy: they have already been disrupted. How can
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distribution [29]. This model has two parameters: its total
massM and scale lengtlu. In addition, we will consider
o two more parameters;,;;, the amount of time the orbit is
| . . .

evolved back in time, and,..s, the amount of time the
Figure 1. Shown is the sky position of the Orphan Stream asdry F dwarf is evolved forwar(_j in time. In order to determine the
turnoff stars from the Sloan Digital Sky Survey (from [26Darker areas ~ Parameters of the best fit model .de':lI‘f gale_lxy, we need some
indicate higher stellar density. There are two tidal streamthis Figure.  measure of how the stars are distributed in the stream. The

The first runs nearly vertically fronh = 200° to I = 240°. This is the nsi f star long th ream function of anal n
Sagittarius Dwarf Tidal Stream. The other, running horiatiptatb ~ 50°, density of stars along the stream as a function of angle o

is the Orphan Stream. The Sextans and Ursa Major Il dwarf geiaare the sky provides f[his very measure.
labeled in the lower panel. The hashed histogram in Figure 2 shows the Orphan

stream stellar density as a function of Orphan stream longi-

tude (\orphan, @ Spherical coordinate system whose equator
we determine the properties of the original dwarf galaxyis along the stream). Note that the gap in the histogram
that created the stream? The simplest way to resolve thiground Ao,phan = 25° is the same gap in Figure 1 at
difficulty is to understand the kinematics of the stream,] = 260°, and thus is not a true absence of stars. We also see
propagate an orbit back in time to a previously orderedthat the high density of stars nedrb) = (255°,49°) corre-
state, and propagate a collection of particles forward insponds with a peak in stellar density/a$,pnan =~ +23°. We
time to the present day. We can understand the kinematiwish to determine the four parameters of the model dwarf
properties of the stream by determining is velocity andgalaxy that best fits the density profile given in Figure 2.
distance at various points along the sky. For most purpose§ur metric for determining the goodness of fit to the density
the radial velocity (velocity along the line of sight) is profile is given in Equation 1:
the only knowable velocity component. Some stars have
known proper motions, which would allow other velocity 9 Z (ni,model — m,dam>2

)

components to be determined, but their errors are often so X =

large as to preclude their use. Knowing the line of sight

kinematics of and distance to the stream, we can use searchwheren; = N;/Niota1 iS the normalized bin height;; =

algorithms to find the best fit three dimensional kinematicsy/N;/Niotal iS the normalized error of a data bify; is the

and background Galactic model [24]. number of stars in bir, and Nyt IS the total number of
With the orbit of the stream understood, we can nowstars in the histogram.

create a group of particles at some time in the past, place

it on this orbit, and propagate it forward to the present day” Proof of Concept

The model from the group of particles is a Plummer Sphere, A proof of concept simulation can be generated by

which is an energetically stable three dimensional sphkric selecting a dwarf mass aff = 1 x 10% * Mg,, (where
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d> 7. (2)
1500 - 1 Smaller values o) therefore give rise to more precise
force evaluations. A value of 1 typically results in accel-
eration errors of one percent compared to the Nifl force
z 1000 | 7 algorithm [32]

Checkpointing has been implemented which allows the
N-body simulations to be restarted when volunteers stop
or pause the BOINC client that runs the N-body simula-
tion. As the hosts at MilkyWay@Home are volunteered,
this checkpointing minimizes the amount of work lost by

20 20 o 20 o volunteers using their computers. Checkpointing can be don
Fambda_Orphan after each timestep. Typically the BOINC client determines
Figure 3. Number counts of simulated stream stars on the sameaaxi Checkpointing is required every few minutes. The positions
the data histogram. The evolution time of the dwarf directliedeines the  and velocities of the particles, as well as the simulatioreti
placement of the peak NeAio:phan = +23° and the length of the stream 5.6 gayed in a binary format. This information is sufficient
while the mass and scale length determine the ratio betwesmpdaik and . . . .
the number of stars in the tail. to resume the simulation. The binary format ensures this
is a lossless process, avoiding inconsistencies in stong t
floating point conversions present in nearly every compiler
Msun is the mass of the sun), a scale radiusaof= 0.2 In addition, the treecode has been adapted to make it
kpc (kiloparsecs), and evolution times,,; = 4.0 Gyr  easier to add and use different initial distributions oftjcters
(gigayears) andtgua,y = 3.945 Gyr. A simulation with  for the dwarf model, such as Plummer models [29] as well
these parameters within the low halo mass model describegk a selection of different components for an external accel
in [26] produces the density profile given in Figure 3. As eration due to the Milky Way, such as spherical bulges [33],
can be seen, this density has the same overall shape as {@gyonential disks [34], and dark matter halos [7], [35].SThi

stream density. Comparison between this and Figure 1 showfodified code has also been made freely available as a
a stream with an overdensity in the same area in the skyyplic repository on GitHub

as well as a stream of approximately the same length. This
simple test shows that physically intuitive parametersilea V- A FRAMEWORK FORGENERIC DISTRIBUTED
to a satisfactory result. However, the histograms need to be OpTIMIZATION (FGDO)
directly and objectively compared using the goodness of fit FGDO has made a series of improvements enabling its
metric in order to find the optimal parameters. use for the optimization of N-body simulations in addition
. . to the MilkyWay@Home’s probabilistic sampling applica-
B. N-Body Simulation Code tion, maki% it )r/nore gener?c and easier to rilsegwi'?hp other
To perform N-Body simulations on a BOINC volunteer computing projects. It is also available as public repagito
computing grid, Barnes and Hut [30] treecode has beemyn GitHub for public usé The new implementation has
modified. This treecode uses a hierarchical method of Npeen written in Java, which allows for easier extension ef th
body simulation, which results in a faster ®(log N)  search methods being used because of Java’s Object oriented
runtime, where N is the number of bodiedhis treecode, nature. In addition, Java has made it much simpler to plug
further described and parallelized by Dubinski [31], opesa in different credit and validation implementations for the
by grouping particles into cell, each with eight siblings. A different applications being used.
the beginning of the simulation, all particles are encldsgd  The previous implementation of FGDO could use either
a cell, which is then subdivided into eight subcells. A trée 0 optimistic or pessimisticvalidation to reduce the amount of
subcells is created until each cell contains only one gartic duplicate work done by volunteered hosts [36]. This presiou
The force on each particle is evaluated by "walking” downimplementation suffers from some drawbacks. First, it uses
the tree. If a particular cell is "too distant”, it contrist 3 fixed verification rate to determine the rate workunits are
en-masse to the force. However, if it is "too close”, the cellgenerated for validation. This has a significant impact @n th
is "opened” and the force is evaluated for the subcells.  speed that the search progresses, and a fixed rate is not an
The opening angle parametérdetermines if a cell is gptimal solution. Additionally, many results are simplytno
"too distant” and "too close”. If the size of a cell isand  yalidated as they will not potentially improve the popuati

the distance of the particle to the cell's center of mass is This makes it easier for malicious hosts to cheat by repprtin
the cell is accepted for force evaluation if:

2http://github.com/Milkyway-at-home/milkywayathomaient
Ihttp://www.ifa.hawaii.edu/ barnes/treecode/treegiittel Shttp://github.com/Milkyway-at-home/fgdgava



bad results as there is a decent chance they will still receiv Differential Evolution: de nbedy test 10 (validated
credit for them when they do not need to be validated.

The new implementation solves these problems by com-
bining optimistic and pessimistic validation with BOINCs
quorum and adaptive replication schemes (which are de-
scribed in detail in [37]), as follows:

—100

-200

Fitness

« When the queue of available work is low, new indi-
viduals are generated through recombination from the
unvalidated population if the optimistic approach is
used, otherwise they are generated from the validated
population. Newly generated work has an initial quo-
rum of one. “uee 0 zolooo 40‘000 solooo solooo 1ocl)ooo 12$ooo 14<I)ooo 1600¢

« When a result is reported for work with a quorum of Individuals natuzed
size one and it cannot improve the validated population,
it is validated with a chance equal to a host’s error rate.
A host’s error rate is initialized to 0.1 (meaning 10% Figure 4. Progress of the best, average, median and worstated

. . . individuals for an asynchronous differential evolutiomssh over the search
of its results will be validated). When a host returns spacenrp, — 0.22 ... 11.11 x 105 Mgy, 7s = 0.05 ... 1.0 kpe,
a result that is validated successfully against anothetorsit = 1 ... 5 Gyr andtguwars = 1 ... ;5 Gyr, with a population of
result, the error rate is muItipIied by 0.95, to a minimum 300 individuals. The fitness (_)f these 4096_parti_c|e N-bouhyl@tions is

.. . alculated by comparing their stellar density histogramh® histogram
of 0.1. When a host returns a result that is invalidatetyt an N-body simulation with dwarf parameteidie, s, torpic, toack ) =
against other results that match each other, its error ratés.6 x 10° Mgy, 0.2 kpc, 4 Gyr, 3.945 Gyr).
is increased by 0.1 to a maximum of 1.0.

« When a result is reported for work with a quorum of 02 —
size one and it can improve the population, FGDO et
will try to insert the individual into its unvalidated
population. In addition, the quorum for this piece of 015 - [] 1
work is increased to the amount specified by the project, ‘
which will cause the BOINC scheduler to send out 1
copies of this work for verification. = oip 1

« When results have been reported that potentially com-
plete a quorum and enough results match to success- ﬂ i
fully determine a canonical result, the canonical result 005 r = HpRs
is inserted into the validation population. Any of these L a=l LT - ‘
results that do not match the canonical result (and A= | TE T A
thus are invalid) are removed from the unvalidated ° m 2 0 20 o
population ) Lambda_Orphan

» When results have been reported that potentially COMgigure 5. simulated Orphan Stream stellar density modeled via
plete a quorum, but not enough match to successfullyBames & Hut treecode. The solid red histogram is the n-bddyus
determine a canonical result, the quorum size is agaiﬁition of the Orphan Stream orbit was performed using the rpeters
. from Newberget al. [26], dwarf parameter§ M p, rs, torbits thack) =

increased to allow the BOINC scheduler to generatgss x 106 Mgy, 0.2 kpe,4 Gyr,3.945 Gyr). The dot-

more copies of this work for validation. ted green histogram is the best fit found to this histograrmgusi
) _ - FGDO on MilkyWay@Home,(Mp, s, torbit, tawarf) = (3.591 x
In this way, the user defined verification rate no longer10® Mgy, 0.22 kpc, 3.97 Gyr, 3.91 Gyr).

required, as the BOINC scheduler will take care of the

frequency in which duplicate work is sent out to hosts

for verification and will try and generate it in a manner V. RESULTS
that verifies the most important results first (the ones with .

the shortest deadline). This allows the BOINC computingb" Comparison to Known Test Data

project to spend more time on verification when it is needed, As a test to see the potential for using AEAs
and more time on exploration when not many results requirégo  optimize the parameters to these N-body
verification. Additionally, it significantly reduces the aomt  simulations, a 4096 particle N-body simulation was
of credits a malicious or broken host can gain by returningperformed using the parameters from Newbery
bad results by adaptively modifying how frequently a host’sal. [26], dwarf parameters (Mp,7s,torbits thack) =
results are verified based on their previous performance. (3.6x10°% Mgy, 0.2 kpc, 4 Gyr, 3.945 Gyr). Asynchronous
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Differential Evolution: de_nbody_modell 2 (validated)
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Figure 6. Progress of the best, average, median and worsiatedi
individuals for an asynchronous differential evolutioassh over the search
spaceMp = 0.22 ... 11.11 x 10 Mgyu,, 7s = 0.05 ... 1.0 kpc,
torpit = 1 ... 5 Gyr andtgyqry = 1 ... ;5 Gyr, with a population of
300 individuals. The N-body simulations consist of 32,768ipies. Model
1 utilizes an exponential disk and NFW halo profile with anlesed mass
of Mgo = 40 x 1019 Mgyp,.

differential evolution was then used with a population aksi

Differential Evolution: de_nbody_model4_2 (validated)
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Figure 7. Progress of the best, average, median and worstatexdi
individuals for an asynchronous differential evolutioaussh over the search
spaceMp = 0.22 ... 11.11 x 10 Mgyun, rs = 0.05 ... 1.0 kpc,
torbit = 1 ... 5 Gyr andtgyaers = 1 ... ;5 Gyr, with a population
of 300 individuals. The N-body simulations consist of 32, #ticles.
Model 4 is a standard Galactic model, using a Miyamoto-Nagsk dind
logarithmic halo and having an enclosed masa&f = 47 x 1010 Mg,p,.

Stream stellar density obtained from the SDSS sky survey.

300, best parent selection, and binary recombination with @j-body simulations are being run within seven models of the
crossover rate of 0.5, a pair weight of 0.5, or DE/best/1/binOrphan Stream kinematics and Galactic potential from [26].
(for more detail on differential evolution variants, see These models consist of the best fit orbits to the Orphan
Mezura-Monteset al. [38]). The search space given was Stream kinematics in a variety of Galactic potentials. The
Mp = 0.22..11.11 x 10° Mgy, 7s = 0.05...1.0 kpc,  aim of this work is to test the dependence of the Orphan
torpit = 1...5 Gyr andtgyqry = 1...5 Gyr. Figure 4 shows  Stream progenitor parameters (mass, scale length, and evo-
the progress of the individuals in the validated populationjytion time) on the various Galactic potential models. Diwar
for this search and Figure 5 compares the stellar densitgarameters that depend on the Galactic potential could be a
histograms of the known test data to the parameters of thgowerful probe into the structure of the Milky Way.
best fit individual found at the end of the search. Figures 6 and 7 show the progress of a selection of
Some discrepancies arose because clients used a rand@fgdse models after approximately a week being run on
seed to generate the initial particle distribution and WithMiIkyWay@Home. As the average N-body simulation time
the N-body simulations using only 4096 particles the ihitia js around 15 hours on a typical computer, to achieve this
distribution played a large factor in the final stellar dénsi  amount of progress for single one of these searches would
model. As this initial distribution was due to randomly take over 5 years on a Sing|e Computer_ These results
generated seeds, the search space ended up being higllyow that not only can MilkyWay@Home perform multiple
noisy. For example, using the best fit parameters found by-Body simulation optimizations concurrently (while also
the search, different seeds resulted in fitness values froomputing it's other optimization problem), it can also
anywhere between -30 to -1200. However, in spite of thisprovide results in a reasonable amount of time for scientific
noisy search space, asynchronous differential evolutiag w progress.
able to find parameters quite similar to what the test data Tpese searches are being run with the same search space
was generated from(Mp, s, torbit, tawarf) = (3.591 X and search parameters as the test data, except the populatio
10° Msun, 022 kpe, 3.97 Gyr, 3.91 Gyr), which also had  gjze has been lowered to 100, as 300 was high for only
very similar histogram to the test data (as shown in Figure 5)4 gptimization parameters. Additionally, the size of the N-
The authors feel that this shows that this approach is ngt onlpody simulations has been increased to 32,768 particles,
feasible, but highly robust. which provides more accurate results with less variance
based on the seed of the initial distribution. The various
models interchange disk and halo gravitational potent@ls
With the test simulations producing results with consistenfind the best fit combination. They are characterized by their
parameters, fits are currently being run on the true Orphamass enclosed withiG0 kpc of the Galactic center)gp.

B. Comparison to Actual Data



Model 1 utilizes an exponential disk and NFW halo profile models the interactions of particles in an attempt to minémi

with an enclosed mass dffsy = 40 x 10'°Mg,,,. Model  or maximize a quantity can benefit from this method.

4 is a standard Galactic model, using a Miyamoto-Nagai

disk and logarithmic halo and having an enclosed mass of

Mego = 47 x 109 Mgyn. [1] N. Cole, H. Newberg, M. Magdon-Ismail, T. Desell,
The progress of these different searches shows that re- K. Dawsey, W. Hayashi, J. Purnell, B. Szymanski, C. A.

. h lati . | ith | f Varela, B. Willett, and J. Wisniewski, “Maximum likelihood
dUCI.ng t 'e population S'_Ze aolng with a larger .number 0 fitting of tidal streams with application to the sagittarius dwarf
particles in the N-body simulation has a dramatic effect on tidal tails,” Astrophysical Journalvol. 683, pp. 750-766,
the convergence rates of the searches. In less than 4,000 2008.
evaluations the populations have already reached Similar[2] N. Cole, “Maximum likelihood fitting of tidal streams with
or bettgr fitnesses to the 4096 partlcle .test data N-body application to the sagittarius dwarf tidal tails,” Ph.D. disser-
s[mulatlons after 150,000 gvaluatlons. This means that the  (ation, Rensselaer Polytechnic Institute, 2009.
histogram made by the final state of the best N-Body .
simulations found matches the histogram of observed stard3] T. Desell, B. Szymanski, and C. Varela, "Asynchronous
as well as or better than the histograms in Figure 5. The genetic search for scientific modeling on large-scale hetero-

h feel that thi id id hat | N.b d geneous environments,” ih7th International Heterogeneity
a.Ut Ors_ ee t.att IS provides eY' ence that larger N-body in Computing WorkshgpMiami, Florida, April 2008.
simulations will be able to provide even better models of
the Milky Way galaxy’s halo, and increasing the number of [4] T. Desell, "Asynchronous global optimization for massive
particles can potentially improve the number of evaluation scale computing,” Ph.D. dissertation, Rensselaer Polytechnic

required to reach a good fit as the noise due to the random Institute, 2009.
Seeding Of the |n|t|a.| particle diStl‘ibutiOl’] in the Searm@ [5] T. Dese”’ B. Szymanski7 and C. Vare|a, “An asynchronous
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