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Abstract—New camera technology is allowing avian ecologists
to perform detailed studies of avian behavior, nesting strategies
and predation in areas where it was previously impossible
to gather data. Unfortunately, studies have shown mechanical
triggers and a variety of sensors to be inadequate in capturing
footage of small predators (e.g., snakes, rodents) or events in
dense vegetation. Because of this, continuous camera recording
is currently the most robust solution for avian monitoring,
especially in ground nesting species. However, continuous video
footage results in a data deluge, as monitoring enough nests
to make biologically significant inferences results in massive
amounts of data which is unclassifiable by humans alone. In the
summer of 2012, Dr. Ellis-Felege gathered video footage from 63
sharp-tailed grouse (Tympanuchus phasianellus) nests, as well as
preliminary interior least tern (Sternula antillarum) and piping
plover (Charadrius melodus) nests, resulting in over 20,000 hours
of video footage. In order to effectively analyze this video, a
project combining both crowd sourcing and volunteer computing
was developed, where volunteers can stream nesting video and
report their observations, as well as have their computers
download video for analysis by computer vision techniques. This
provides a robust way to analyze the video, as user observations
are validated by multiple views as well as the results of the
computer vision techniques. This work provides initial results
analyzing the effectiveness of the crowd sourced observations
and computer vision techniques.

I. INTRODUCTION

Camera studies have become popular tools in the field
of avian ecology as they can dramatically reduce researcher
impacts on behavior and monitor animals in remote loca-
tions [1], [2]. However, many of these studies have been
hampered by small sample sizes, where few have studied
more than 100 nests [2], limiting the biological inferences
that could be made due to lack of statistical significance.
This limitation has been in part due to the lack of tools to
swiftly analyze large amounts of video footage. In the summer
of 2012, numerous cameras were set up across the western
part of North Dakota, gathering over 20,000 hours of video
footage of sharp-tailed grouse (Tympanuchus phasianellus),
approximately 6 terabytes of data. In addition, 213 hours
of test video has also been gathered for the interior least

tern (Sternula antillarum), federally listed as an endangered
species, and 682 for the piping plover (Charadrius melodus),
federally listed as a threatened species. There are further plans
to monitor these birds in future nesting seasons, which should
result in a total of over 100,000 hours of video. The sharp-
tailed grouse is considered an indicator species, meaning that
the success of the species is closely tied to the health of the
wildlife in the area. An analysis of this video will not only
result in a wealth of biological knowledge about these species,
but can also be used to examine the impacts of oil development
in western North Dakota.

There are significant challenges in developing a purely
computational analysis of this wildlife video, as shown in
Figure 1). The species being studied, along with many of their
predators, have evolved with cryptic coloration, or camouflage,
making it difficult to distinguish them from their surroundings.
Further, the video is taken from uncontrolled outdoor settings,
with vegetation moving in the wind and changing weather
conditions. Footage is recorded continuously with daytime
video captured in color. Infrared light emitting diodes (LEDs)
are used in low light and night conditions and recordings
during this time are in black and white. This results in a wide
variety of video quality and color.

This paper presents initial work developing a citizen sci-
ence project called Wildlife@Home, which combines both
volunteer computing, where people volunteer their computers
to different computing projects, and crowd sourcing, where
people volunteer their brain power, to aid in the analysis of this
vast amount of video. To our knowledge, no citizen science
project has combined the two, and crowd sourcing projects
involving the analysis of video are limited. Wildlife@Home
was used to compare the results of preliminary motion and
feature detection algorithms to the validated observations made
by users, and was able to detect a noticeable signal for
the presence of piping plover using feature detection, and
active events involving the sharp-tailed grouse video using
motion detection; which is significant given the challenges of
analyzing this uncontrolled 24-hour outdoor video.



Fig. 1. A sharp-tailed grouse in day, dusk and night conditions (top), and a piping plover in varying light conditions (bottom). Birds are circled in red. Given
the cryptic coloration of the bird and lighting conditions, it can be very difficult to distinguish the bird from a rock, grass or other objects.

II. RELATED WORK

A. Detecting Animals in Video

While more commonly used with humans and other objects
where there is a large body of work (for surveys see [3],
[4]), computer vision has also been successfully used to detect
animals and animal events. Significant work with animals has
been done in controlled laboratory settings, simplifying the
task of gathering video and animal detection. A common
approach is to subtract a uniform background from the an-
imals, which has been used to track white mice on black
backgrounds [5], [6], [7] or in water [8], [9], [10]. Tracking
and detecting behavior of fruit flies (Drosophilia) [11], [12],
[13] has been done in similar settings. Detection of particular
actions or events has also been studied, such as vomiting of
musk shrews [14], [15] using non-rigid body contour matching
and various actions of a grasshopper [16] using spectral
clustering [17].

Research has also been done in uncontrolled lab settings,
without background subtraction or environmental controls.
Sequential Monte Carlo methods, or particle filters [18],
[19], [20], [21], have been used to to provide tracking with
resiliency to unpredictable motion and non-linear measurement
models, and have been mostly used with insects such as
ants [22] and bees [23], [24]. Tracking outlines of animals
in their stalls using active contours has been used for larger
animals like cows [25] and pigs [26]. Using multiple features
(image abstractions such as anatomical and cage character-
istics) to track rats in reflective and potentially scratched
cages [27] and determine mice behaviors [28], [29] has been
successfully used as well. Also of note, Jhaung et al. developed
a manually annotated video database for training and testing
a computer vision system for detecting behavior in mice in

cages [30], [31], [32].
Considerably less research has been done using video taken

in uncontrolled natural settings. Particle filters have been used
to track multiple birds in the sky [33]; and data association
methods have tracked and counted extremely large numbers
of bats in noisy infrared video, taken as the bats leave their
caves at night [34]. Face detection has also been used to
classify species of African great apes using footage taken
from video traps [35]. In settings most similar to this work,
BearCam has been used to detect bears in the arctic circle
during four hour daytime periods [36] by taking low level
features such as image gradients and background differences
and combining them into a mid-level motion shapelet [37]
using AdaBoost [38].

B. Citizen Science Projects
Volunteer computing has emerged as a viable and significant

source of computing power. It is being successfully used to
perform research in scientific applications ranging from as-
tronomy [39], [40], [41], biology [42], [43], [44], [45], chem-
istry [46], and physics [47], [48], to climate modeling [49]
as well as many other fields of enquiry. Berkeley’s Open
Infrastructure for Network Computing (BOINC) [50], [51] is
the most widely deployed volunteer computing framework, in
part due to its open source code and easy extension.

On the other hand, crowd sourcing has been successfully
used by citizen science projects to tackle problems requiring
human feedback. GalaxyZoo [52], [53] has had great success
in using volunteers to classify galaxies in images from the
Sloan Digital Sky Survey [54]; and PlanetHunters [55] has
been used to identify planet candidates in the NASA Kepler
public release data. More recently, Snapshot Serengeti [56]
has been created to classify images from camera traps in the



Serengeti National Park. However, these projects focus on
volunteers doing identification and classification of images,
not video.

Cornell’s NestCams project [57] has provided an outstand-
ing resource for environmental education and gained popu-
larity through the use of nest cameras to attract the public’s
interest in environmental science. NestCams primarily focuses
on public outreach where video is collected opportunistically
from cameras installed in bird houses, capturing a variety
of cavity-nesting species. The CamClickr project has sparked
applications of nest video archives for education in collegiate-
level animal behavior courses [58].

III. COMBINING CROWD SOURCING AND VOLUNTEER
COMPUTING

Volunteer computing provides the required computing
power to successfully analyze the video gathered for this work,
while crowd sourcing provides access to enough people for the
generation of training data and verification of the computer
vision techniques. This combination of volunteer computing
and crowd sourcing is a natural fit for tackling the problem
of analyzing large amounts of avian nesting video, given its
potential to provide massive amounts of human observation
and computing power.

Figure 3 presents a detailed work flow for the databases,
server side daemons and web pages utilized to manage the
video and information generated by the crowd sourced users
and volunteered computers. The following sections describe
the details of the crowd sourcing and volunteer computing
implementations.

A. Crowd Sourcing

The gathered avian nesting video gathered is converted to
three minute segments for streaming to the crowd sourced
users. These users can select the species and location they
wish to view video from, after which videos are selected by the
web services to be streamed to the user. This is done by first
selecting other videos of that species from the same location
which do have observations, but do not have a validated
observation from other users. This is done in order to validate
videos requiring another viewing and provide users with credit
as fast as possible. If there are no other validated videos for
the selected species and location, a random new video will be
streamed to the user.

Users can then specify yes, no or unsure for a set of events
that provide information for evaluating biological hypotheses
about the birds (see Figure 2), and can also leave comments.
When a user submits their observations, they are shown the
observations made by other users, which aids in the learning
process for observing the video, and are awarded credit if their
observations are successfully validated. The project uses this
credit to maintain a set of leaderboards for the users who have
watched the most video. Observations from users are validated
when a quorum of similar observations has been reached. Two
observations match if there are no conflicting events, e.g., a yes
for presence by one user and a no for presence by another user.

Unsure classifications count as a match to either yes or no;
however a video will continue to be shown to users until either
all events have validated non-unsure responses or observations
have been reported by 5 different users.

B. Volunteer Computing

BOINC [50], [51] has been used for the volunteer com-
puting framework, as it is easily extensible and already has a
large user base which actively discover and participate in new
volunteer computing projects. A motion detection application
and a feature detection application which uses the SURF
algorithm [60] have been implemented. The avian nesting
video is recorded by the nest cameras into files which are
typically 1.5 to 2 hours log. These are used as the basis for
the workunits that the volunteered computing hosts process.
When a host requests work, it downloads a set of videos to
run the motion or feature detection applications on. In the
case of feature detection, the host will also download a feature
file to match the frames of the video against. In both cases,
the applications report a likelihood of motion or the presence
of the selected features for each three minute segment of
the video, allowing for easy comparison to the observations
reported by the crowd sourced users. The BOINC daemons
handle validation of these results by sending the same video
to multiple hosts, until a quorum of similar results is reached.

1) Motion Detection: The motion detection application
utilizes an approach called average window differencing. In
this approach every frame is compared to an average of a
window of surrounding frames for each pixel component (e.g.,
RGB or YUV). Pixel information was decoded from the video
segments using libavcodec. Various window sizes were tested,
and for the purposes of this work a window size of 10 seconds
of frames (five before and five after) was used, which proved
sufficient to minimize the effect of weather changes like clouds
moving across the sky, as well as vegetation moving in the
wind. For the first five seconds of video and for the last five
seconds of video, the average window all the existing frames
five seconds before and after (e.g., the last frame would be
compared only to the five previous) .

The likelihood of motion is calculated using a placeholder
array (which effectively mimics a frame) which stores the
sum of the red, green, and blue (RGB) components for each
pixel in a frame. Another array is populated with the values
from the summation array divided by the number of frames
in the window (frames in 10 seconds + 1), representing the
average values for the window. The RGB components of the
middle frame of the window are subtracted from the calculated
average, summed and then divided by the maximum possible
response value of a frame (width x height x 3 x 255). This
response value (the difference between the middle frame and
the average of its window) is then summed for each frame in
the three minute segment. By storing the frames in the window
and subtracting the oldest frame and adding the newest frame
to the placeholder array as a video is processed, this response
can be calculated efficiently.



Fig. 2. An example of the interface used for crowd sourcing. The page has been developed using HTML5, jQuery and Bootstrap, allowing for easy use
across different devices and web browsers.

2) Feature Detection with SURF: Feature detection consists
of two parts. The generation of feature files is done offline by
combining common features obtained using the SURF [60]
algorithm on selected images of the event to be detected (e.g..,
multiple angles of a bird at the nest, a bird in flight, an empty
nest, etc). These feature files are then used by the feature
detection application on videos downloaded by the volunteered
hosts, who report a likelihood of the presence those features
for each 3 minute segment of video.

a) Generating Feature Files: The feature collection pro-
gram uses OpenCV [61] to load a video file and OpenCV’s
SURF implementation to extract the features. When the pro-
gram loads it displays the first frame of the video and waits
for the user to select the region of interest by dragging a box
around the section. This generates a series of images contain-
ing just the bird to be used for generating the features. As each
frame is processed, the newly collected feature descriptors are
compared against the previous frames descriptors. Any new
features that are smaller than twice a minimum threshold are
discarded. This prevents features that are too similar from
being added to the feature set. This greatly reduces the feature
set size while maintaining a robust set of features. Once all of
the features are collected from the video, they are stored in a
feature file which can be used on many different videos of the
target species and then combined with a feature consolidation

program.
The consolidation program takes a series of feature files and

combines them into a single feature file, removing any similar
features using the same minimum threshold. This creates a
single large feature set for matching a specific species of
bird, or matching a specific bird position or action, such as
flying, sitting, or standing. Once this robust feature set is
collected, the main program is run against different videos
by the volunteered hosts with a given feature set generate a
likelihood of the event represented by that feature set occurring
in each three minute segment of that video.

b) Detecting Feature Presence: The feature matching
program works by extracting SURF features from each frame
and comparing them against the given consolidated feature
file. This is the basis for determining whether or not there is a
match in the video. The success of this is primarily based on
the quality of the feature set and how the matching data points
are interpreted. Matched points are returned with a distance
value from the given features, which is used to interpret the
quality of any given match.

Matched features are not always well correlated. Some have
very high difference values and when viewed they are not part
of the bird or even the same type of texture as a bird. Others
have fairly small difference values, but when viewed on the
video do not match up with the bird but instead nearby patches
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of dirt or other dark places on the image. In order to handle
the first problem of extreme outliers, the minimum distance
value for all features from a frame is used and any features
that are greater than three times this value are discarded.

With this a approach, if there is a high minimum value many
features are matched (but they are of a high distance, so they
are generally bad), and if there is a very small minimum value
then very few features are matched (with a small distance so
they are generally very good). By fitting a rectangle around
the matched features, it is possible to get a likelihood of how
well the target event was matched. If there are many matched
features with high distance values, the rectangle tends to be
quite large and does not match the event; on the other hand,
if there are a few features clustered together they present a
strong match to the event.

The likelihood, l, for each three minute segment of video
is calculated as:

l = 1− Ra

Rf
(1)

Where Ra is the average of the size of each feature bounding
rectangle for the three minute period, and Rf is the frame
size.

IV. RESULTS

As of May 2013, approximately 70 volunteers have gen-
erated over 120 hours of validated observations from the
collected video, with over 8400 three minute video segments
having been watched with observations reported. Over 100
computers have participated in the project and were used to
calculate the preliminary results for motion and feature detec-
tion. It should be noted the number of volunteered computers
is limited as the client application is currently compiled only
for Linux and OSX, however a Windows application is in
development.

Motion detection was run across the entire video set
(over 20,000 hours). With the motion detection application
processing video at 120 frames per second on a typical
host, Wildlife@Home and its volunteers were able to get
motion likelihood values for the entire data (at 10 frames
per second, approximately 1700 compute hours) set in a
reasonable amount of time, 4-5 days. The SURF feature
detection algorithm runs significantly slower due to its massive
computational requirements, running on a similar machine
at 1.7 frames per second. Even so, when generating feature
detection results for the piping plover video, the 682 hours
(at 10 frames per second, approximately 4000 compute hours)
were also able to be analyzed in under a week.

A. Motion Detection Analysis

Initial motion detection analysis was done using video
containing sharp-tailed grouse. This species was chosen due
to the fact that it nests in dense vegetation and has cryptic
coloration, making it highly difficult for feature detection to
distinguish the nesting grouse from its environment. Over
60 hours of video has been observed and validated for the

Fig. 4. Histograms for the motion detection likelihoods of video segments
validated to contain active and inactive events.

species, and this was used to examine the results of the motion
detection application.

Figure 4 presents the results for the motion detection
compared to the users observations. Each three minute video
segment with validated user observations was separated into
two sets, one containing active events (a bird returning, leav-
ing, presence of a predator, nest defense or if the user marked
the video interesting) and the other containing inactive events
(a bird simply incubating the nest, not being present, i.e., any
video containing no event that would flag it as active).

There were 188 video segments containing active events,
and 179 video segments containing no active events. The
average and median of the active event videos (0.039 and
0.035) were noticeably higher than the inactive event videos
(0.030 and 0.028). Further, there are significantly more video
segments with high (greater than 0.05) motion likelihoods
containing active events than not. It is also important to note
that the video segments occurred across night time, dawn,
dusk and daylight, and that many videos contain significant
amounts of vegetation moving due to the near constant winds
of the plains of North Dakota. While the initial results do not



Fig. 5. Histograms for the likelihoods of video segments validated to contain
or not contain a piping plover.

provide a strong enough signal to determine active events by
computational analysis alone, the fact that there is positive
correlation for this motion detection provides motivation to
continue to improve upon this technique.

B. Feature Detection with SURF

The initial feature detection analysis was done using video
containing piping plover. As this is a shore nesting species,
there were significantly less obstructing objects in the land-
scape, unlike the sharp-tailed grouse video. As such, it pro-
vided a good data set for testing of the feature detection
application. Over 20 hours of video has been observed and
validated for this species, and this was used to examine the
results of the feature detection application.

Figure 5 presents the results for detecting the presence of
piping plover compared to the users observations. The piping
plover shows bi-parental incubation, where one parent will
leave the nest and the other will take its place after a short
period of time, and therefore many segments contained obser-
vations with both the presence and absence of a bird marked.
Because of this, the video segments used were restricted to

those strictly containing only the presence or absence of a
bird (and not both).

There were 133 videos containing bird presence, and 50
with bird absence (as there is bi-parental investment, there are
not as many videos without a bird incubating the nest). The
average and median of the presence videos (0.24 and 0.21)
was also noticeably higher than average and median of the
video segments with bird absence (0.20 and 0.17). Similar
to motion detection, these videos were from any time of the
day, and also contained varying weather conditions; so while
they do not provide a strong enough signal to determine bird
presence as of yet, the results provide motivation that further
refinement of the feature sets and detection algorithm should
be able to determine the presence of the birds and other events
of interest.

V. CONCLUSIONS

This paper provides initial results describing the develop-
ment of Wildlife@Home, a unique citizen science project
which combines both volunteer computing and crowd sourc-
ing. As of May 2013, over 70 volunteers have watched
and provided observations on over 8400 three minute video
segments, with over 120 hours of observed video having been
validated by multiple users. Over 100 volunteered computers
were used to calculate motion and feature detection likelihoods
on thousands of hours of video to gather an initial analysis of
these methods. Preliminary results show noticeable detection
of bird presence using feature detection for the piping plover,
and for active events within the sharp-tailed grouse video;
providing a strong motivation that a citizen science project
of this type will be able to successfully analyze the vast
amount of avian nesting video. Further, this project can be
easily extended and is open to use for video gathered by other
wildlife biologists.

We expect to be able to improve the motion detection
algorithms using filters and other methods of removing the
impact of changing weather and lighting conditions as well as
moving vegetation. With these negated it should be possible
gain a strong signal for events of interest.

We also wish to investigate better localization of the objects
detected by the SURF application. There is still significant
noise with the feature matching, and running tests against the
quality of the feature collection and the quality of the feature
matching should aid in improving the feature detection meth-
ods utilized. Another improvement will be to analyze each
frame’s features based on their standard deviation to remove
outliers, while also to giving features with small difference
values priority in determining the presence of a bird. As a
frame with very good feature matches may almost guarantee
the presence of a bird, it is a much more valuable frame than
one with poor feature matches. Further, this work lays the
framework for examining other computer vision methods, such
as SIFT [62] and its variants for detecting events within the
video.

As the public is actively engaged in the analysis of this
video, the project also provides a strong avenue for public



education. Using these and further results, we will be able
to perform outreach to future wildlife biologists as well as
computer scientists by engaging them in the projects open
source code development and in providing ways to better
educate the volunteers on how to properly observe the video.
As the motion detection and feature detection algorithms im-
prove in accuracy, we also intend to utilize them to determine
which videos to show to users; which should greatly increase
participation and interest as only videos with interesting events
occurring which require human observation will be streamed
to them. This work on Wildlife@Home provides a strong
example of the scientific and educational opportunities that
citizen science can foster.
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