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Abstract—DNA@Home is a volunteer computing project that
aims to use Gibbs Sampling for the identification and location
of DNA control signals on full genome-scale datasets. A fault
tolerant and asynchronous implementation of Gibbs sampling
using the Berkeley Open Infrastructure for Network Computing
(BOINC) was used to identify the location of binding sites of
the SNAI1 (Snail) and SNAI2 (Slug) transcription factors across
the human genome. A set of genes that are regulated by Slug
but not Snail, and a set of genes that are regulated by Snail but
not Slug were used to provide two datasets with known motifs.
These datasets contained up to 994 DNA sequences, which to our
knowledge is largest scale use of Gibbs sampling for discovery
of binding sites. These genomic regions were analyzed using
datasets containing various numbers of intergenomic regions.
1,000 parallel sampling walks were used to search for the
presence of 1, 2 or 3 possible motifs. These runs were performed
over a period of two months using over 1,500 volunteered
computing hosts, and generated over 2.2 Terabytes of sampling
data. High performance computing resources were used for post
processing of the Gibbs Sampler output. This paper presents how
intra- and interwalk analyses can aid in determining overall walk
convergence. The results were validated against current biological
knowledge of the Snail and Slug promoter regions, and present
potential avenues for further biological study.

I. INTRODUCTION

This paper presents an expansion on previous work done
with DNA@Home [1] volunteer computing project. The
DNA@Home project implements an asynchronous version
of the Gibbs Sampling algorithm which performs parallel
sampling walks using volunteer computing. DNA@home uses
the Berkley Open Infrastructure for Network Computing
(BOINC) [2] to provide massively scalable computing power
to search for transcription factor binding sites (or motifs) in
large datasets.

DNA@Home performed parallel Gibbs sampling runs with
various parameters and data sets of varying sizes over a period
of two months, aimed at identifying motifs related to the
SNAI1 (Snail) and SNAI2 (Slug) genes. Each run had 1,000
parallel sampling walks, and the largest data sets contained
994 regions of DNA. This resulted in over 2.2 Terabytes of
sampling data, which was analyzed using high performance
computing resources. To our knowledge, this is the largest
scale use of Gibbs sampling for de novo transcription factor
binding site discovery.

Fig. 1. This figure presents how DNA@Home performs parallel Gibbs
sampling. Arrows represent workunits, or volunteer computing tasks, where
hosts receive an initial state with depth x, Sx, and report a final state with
depth y, Sy. Workunits have fixed walk lengths, in this case 1, however
the runs described in this work had walk lengths of 10,000. When a walk
completes its burn-in period, samples are taken. Processors can join and leave,
restarting from walks of previously left processors.

A. The Gibbs Sampler

The Gibbs Sampler used by DNA@Home is set up to
execute many walks in parallel. Each walk represents a run
of the sampler with a different initial starting position. As a
walk progresses it takes a number of steps. Each step is a
move in the Markov chain. After a certain number of steps, a
super-step, the resulting distribution is output, previous steps
are forgotten and the current position is used to restart the
walk (see Figure 1).

A major issue with Gibbs sampling is that the initial
randomly chosen starting point will bias the result of the
sampler. To overcome this bias, a certain number of steps
should be discarded. The number of steps needed to overcome
the initial bias is called the burn-in. The burn-in might be
significantly larger than the size of each super-step, and is
dependent on the dataset and parameters to the Gibbs sampler
(which include how many motifs are being searched for, what



type of motifs they are, and how many nucleotides long the
motifs are). The burn in time needed is similar for each walk
though there are some outlying walks which do not converge
as quickly. Without determining a burn-in it is unclear how
many steps need to be taken before a valid sample set is
generated. The number of steps per super-step is called the
step-size. A larger step-size provides a better sample and will
make burn-in easier to detect. A smaller step size requires less
computation.

It is possible to determine the required burn-in for an indi-
vidual walk through convergence detection algorithms. Ideally
the distribution generated at each super-step will approximate
a stationary distribution, meaning that additional steps will
not significantly alter the distribution. After the burn-in period
is complete the sampler should converge. It is possible that
some datasets and input parameters will not converge. If
convergence is detected, the burn-in period is complete and
the next result of the sampler is valid. No further steps are
required and computation can cease.

While convergence is a useful tool for determining when a
single walk has completed, it does not guarantee that the walk
has a good distribution of samples that completely represents
likely motifs, as it could have converged to a local optima.
By using multiple walks, it is possible to discover additional
motifs by settling into different local maxima, and provide a
more global picture of the sampling space. Results show that
analyzing distances between parallel walks can provide a good
picture of whether or not the walks have converged, and if they
have converged to local optima or global optima.

B. Biological Significance of Snail and Slug Motifs
The Snail family of Zinc-finger transcription factors,

SNAI1, SNAI2, and SNAI3 are highly conserved across
vertebrates [3]. The Snail1 (Snail) and Snail2 (Slug) tran-
scription factors bind to the subset of E-box motifs
(CAGGTG/CACCTG) present at gene promoters, and recruit
co-factor complexes to alter gene expression [3]. By changing
expression of genes such as E-cadherin, which helps cells
adhere to one another, Snail and Slug trigger loss of cell-
cell adhesion, and hence cellular movement. This caused cells
to change their shape and migrate, a phenomenon called
Epithelial-to-Mesenchymal Transition or EMT [4]. EMT is
essential for proper embryonic development, but is also re-
sponsible for tumor invasion and metastasis [4]. While Snail
and Slug have several functions in common, they yet appear to
have distinct gene targets (Moreno-Bueno et al. , Dhasarathy
et al. ) [5] [6], which potentially has implications in their
distinct roles at different stages of cancer metastasis. As yet,
the molecular basis for the distinct regulation and binding
affinity of downstream target genes by Snail and Slug are
unknown.

II. RELATED WORK

Lawrence et al. [7] provides an in depth discussion of how
to apply the Gibbs Sampling algorithm to the motif finding
problem. The differences in convergence rate between runs due

TABLE I
PROJECT DATASET COMPARISON

Project Gibbs Sequences Length Runs Motifs Width
DNA@Home Yes 994 1000 1000 1,2,3 6
ChIPMunk No 10,000 1300 1 1 21
Bioprospector Yes 60 800 250 1 8
PRIORITY Yes 34 1300 5 0,1 8
W-AlignACE Yes 176 800 5 2 10

to differing random start sites is described. Lawrence claims
that the power of the Gibbs sampler increases when used with
more sequences because the pattern model is improved by
adding more data.

A. Dataset Size

Table I relates the data set analyzed by DNA@Home
to other recent work (note that ChIPMunk is not a Gibbs
sampler). As described in Kulakovskiy et al. [8] many of
the existing Gibbs Sampling motif discovery tools are not
suited to processing the wealth of data provided by Next
Generation Sequencing (NGS) data sources. Techniques like
Chromatin Immunoprecipitation combined with sequencing
(ChIP-Seq) determine where proteins bind on the genome,
and can provide thousands of sequences with more than 1000
base pairs in each sequence. The size of the problem set and
the efficiency of Gibbs sampling causes many approaches to
reduce the dataset significantly so that it can be run on the
available pool of hardware in a reasonable amount of time.
DNA@Home overcomes these challenges through massive
parallelism and volunteer computing. Kulakovskiy compares
the efficiency of Weeder Pavesi et al. [9], Gibbs Sampler
Lawrence et al. [7] and MEME Suite Bailey et al. [10].
Kulakovskiy also discusses the efficiency of cERMIT [11]
another algorithm which takes advantage of the properties of
ChIPSeq and HMS [12] which reduces the stochastic sampling
set size and selects the alignment variable chauvinistically.

Kulakovskiy provides ChIPMunk which is suited for work
on significantly larger scales than many of the previous Gibbs
Sampling algorithms. However, ChIPMunk is not a Gibbs
Sampling algorithm, it is a greedy optimization using several
heuristics. ChIPMunk was meant to address the increased
problem space created by the use of ChIPSeq data. ChipMunk
takes advantage of several properties of ChIPSeq data to create
hueristics which are specific to that type of dataset.

Narlikar et al. [13] provides PRIORITY, a Gibbs Sampling
algorithm which takes advantage of knowledge of transcription
factor binding sites to use an informative prior probabil-
ity. PRIORITY is shown to be an improvement over Alig-
nACE [14], MEME [10], MDscan [15] a weighted position
matrix approach, and CONVERGE [16].

Similarly to Kulakovskiy and Narlikar, Che et al. [17] pro-
vides BEST which compares multiple motif finding programs:
AlignACE [14], Biorprospector [18] and MEME [10].

Liu et al. [18] discusses the bioprospector a system for
discovering motifs using Gibbs sampling. Liu implements the
Gibbs sampler and describes methods used to validate that



bioprospector found meaningful motifs. Bioprospector was
run on 60 sequences of 800 base pairs. Liu discusses meth-
ods to improve on Lawrence’s Gibbs Sampler by replacing
the mixture model with a threshold sampler to account for
relationships among input sequences. A third order Markov
background model is used to take advantage of the larger
dataset.

Chen et al. [19] provide W-AlignACE, a Gibbs Sampling
method using an improved positional weight matrix. Chen
compares W-AlignACE to the Gibbs Samplers AlignACE [14]
and MDSCan [15].

B. Burn-In and Other Problems in Gibbs Sampling
There are many methods that can be used to determine the

burn-in period and convergence rate of a Markov Chain Monte
Carlo (MCMC) algorithm. Brooks et al. [20] has identified
the following classes of methods for assessing convergence
and determining burn-in in Gibbs Sampling: variance ratio,
spectral, empirical kernel-based, regeneration and coupling,
and semi-empirical methods that use Eigen Value bounds. The
Kolmogorov Smirnov 2 sample statistic is a spectral method
which can be used to test the null hypothesis of stationarity.

Jensen et al. [21] discusses methods for finding motifs
using Gibbs sampling when multiple motifs are present in
the data set. Jensen uses a annealing approach to shifting the
sampler to avoid being stuck in local maxima. This shifting
approach uses a heat function which decreases the size of shifts
over time.

Woodward et al. [22] discusses problems with slow mixing
and poor or nonexistent convergence of Gibbs sampling when
used to detect motifs in genomic data if multiple motifs are
present. In woodwards case, convergence rate decreased as the
length of DNA sample increased. While DNA@Home used a
average sequence length of 1000 base pairs, the number of
sequences per dataset was varried. DNA@Home found that as
predicted in Lawrence et al. a larger size dataset increases the
rate of convergence [7].

III. IMPLEMENTATION

A. Generating the Dataset
To generate the dataset, genes from a list generated by

global gene expression microarray analyses by Dhasarathy et
al. [6] were used. In this experiment, Snail and Slug were
independently expressed in human MCF-7 breast cancer cells,
in a time course over 4 days. The genes that were uniquely
regulated by Snail or Slug (both up or down) over the four
days were compiled in a list, with overlaps being merged,
thus generating two lists of genes unique to Snail or Slug
regulation. The gene sequence of each of these genes was
obtained at an interval of -500 to +500 base pairs from the
transcription start site from the UCSC human genome browser
(hg19) [23].

The initial sequence dataset used to generate the ranked
list of genes for this experiment were taken from the En-
code project at UCSC [23]. The track used was wgEn-
codeOpenChromChipMcf7Pol2SerumstimRawDataRep1. This

TABLE II
DATASET CONFIGURATION AND BURN-IN INFORMATION

Motifs Dataset Size Intervals Genes Burn In Stable
1 Snail Large 1442 994 <20,000 Yes
1 Snail Medium 1442 100 <20,000 Yes
1 Snail Small 1442 10 <20,000 No
1 Slug Large 412 372 <20,000 Yes
1 Slug Medium 412 99 <20,000 Yes
1 Slug Small 412 10 <20,000 No
2 Snail Large 1442 994 <20,000 Yes
2 Snail Medium 1442 100 130,000 Yes
2 Snail Small 1442 10 N/A No
2 Slug Large 412 372 60,000 Yes
2 Slug Medium 412 99 200,000 Yes
2 Slug Small 412 10 N/A No
3 Snail Large 1442 994 <20,000 Yes
3 Snail Medium 1442 100 <20,000 Yes
3 Snail Small 1442 10 N/A No
3 Slug Large 412 372 <20,000 Yes
3 Slug Medium 412 99 <20,000 No
3 Slug Small 412 10 N/A No

track was chosen due to prior work in the workflow de-
velopment which centered on Snail and Slug representation
with regards to RNA Polymerase II (Pol II) binding. The
entire Snail dataset contains 1,422 genes, while the entire Slug
dataset only contains 412. Three different size FASTA files
were generated for each dataset: small, medium, and large. To
generate the FASTA files successively smaller sets of genes
are used. The different data sets are illustrated in Table II.

The Gibbs Sampler takes a FASTA file containing the
sequences that define the genes across the generated intervals.
To generate the FASTA files a workflow was developed which
takes sequenced data in FASTQ format and assigns each
individual sequence a unique coordinate based on the se-
quence of human hg19 genome annotation using Bowtie [24],
converts it to BedGraph format for display and verification,
then associates the display data with gene intervals, filters
that set for overlapping genes and ranks the genes based
on the number of matching reads. The BowtieToBedGraph
conversion software and CPPMatch ranking software was
provided by Adam Burkholder of the National Institute of
Health.

B. Gibbs Sampling Configuration

The Gibbs Sampler was configured to search for 1, 2, or 3
motifs. Searching for more motifs per run was done to examine
how the number of motifs present in the dataset effects on how
quickly the parallel Gibbs sampling walks converge. There
are six datasets to run, 3 for Slug and 3 for Snail. Those
runs represent the different number of genes used in each
dataset. The Snail and Slug datasets were run independently.
For each run of the Gibbs Sampler 1000 independent walks
were created. Each walk had the same dataset and started with
a random initial starting samples and a different random seed.
Each walk had a super-step size of 10,000 steps. After each
super-step the resulting empirical distribution was stored for
off-line calculation of the convergence rate and a new super-
step was started from the current position with a new random



seed.

C. Checking for Convergence
The Kolmogorov-Smirnov 2 sample statistic is used to test

the null hypothesis of stationary distribution. Each time a walk
is restarted a sample is reported for the last super-step of
the walk. That sample represents the empirical distribution of
that period. The Kolmogorov-Smirnov 2 sample test generates
two values, a maximum distance between distributions and a
probability that two distributions are generated from the same
source distribution. Kolmogorov-Smirnov sorts the sample
to create the distribution function and then compares the
distribution with the previous distribution.

The Kolmogorov-Smirnov 2 sample test is appropriate for
testing Gibbs Sampling convergence for several reasons. The
test is non-parametric, it doesn’t assume a particular known
distribution. This is an advantage because the empirical motif
distribution is unknown and unlikely to fit a common proba-
bility distribution. Transformations of the values being tested
will not affect the result so using larger super-step sizes will
make the results more accurate without distorting them.

IV. RESULTS

A. Gathering Results with DNA@Home
The results for this work were gathered over a period

of approximately 2 months using the University of North
Dakota’s Citizen Science Grid, of which DNA@Home is a
subproject. The number of simultaneously volunteered hosts
participating in the project averaged around 1,650 during this
period. Near the end of this period, the BOINC Charity Team
selected the project for an event, which resulted in a burst of
an additional 400-500 compute hosts in February. As of March
2015, DNA@Home and the Citizen Science grid has had over
1,500 users provide over 4,100 compute hosts for the project.
In total, 18 runs were made looking for one to three of motifs
using Snail and Slug datasets of small, medium and large sizes
(see Table II). These runs on DNA@Home generated over 2.2
Terabytes of sampling data with which the following analyses
were generated. Convergence rates for individual walks are
examined in Section IV-B, convergence of the entire parallel
sampling walks is discussed in Section IV-C and a discussion
and validation of the motifs found is presented in Section IV-D.

B. Intrawalk Analysis and Burn-In Detection
The burn-in period was well defined for all runs that

converged. As illustrated by Figure 2, the small dataset con-
verged for the case of 1 motif for both datasets. However, the
probability sample standard deviation remained around 10% so
those results were marked as unstable. Runs with 2 or 3 motifs
did not converge for the small datasets. Their probability
consistently hovers around 20% for all of the runs with a
probability sample standard deviation of around 35%. Figures
for the remaining small runs are not included. The number of
motifs searched for affects the rate of convergence. For 1 and
3 motifs all of the medium and large runs converged by 20,000
steps. The 2 motif runs show that using more genes improves

the rate of convergence. While this may seem counterintuitive,
this is in agreement with the claims of Lawrence et al. [7],
that convergence rates of Gibbs sampling increase with more
sequences.

1) Analysis of the 1 Motif Runs: Figure 2 shows a com-
parison of the 1 motif results for Snail and Slug. The small
Slug datasets both show signs of convergence. However the
high probability sample standard deviation draws the quality
of this data into question. The consistent presence of near
zero probabilities also suggests that these results are not
stable. The Medium dataset satisfies burn in and converges in
under 20,000 steps. The minimal probability sample standard
deviation and consistently high minimum probability suggest
that all of the walks have converged.

2) Analysis of the 2 Motifs Runs: Figure 3 shows the results
from searching for 2 motifs at once. This shows that using a
larger dataset improves the rate at which the walks converge.
In both the Slug and Snail 2 motif medium cases, the walks
do not immediately converge. Instead of the convergence seen
in the first 20,000 steps in the other results for all numbers
of motifs, this data shows that while the average probability
of convergence is very high, the sample standard deviation
is not reduced until much later. In the case of the Slug
medium data the standard deviation isn’t reduced until 200,000
steps. The Snail dataset sees the reduced standard deviation at
130,000 steps. In both cases, moving to the large dataset is an
improvement.

3) Analysis of the 3 motifs Runs: Figure 4, shows that
for Slug, while the medium size dataset converges quickly
at around 40,000 steps, the stability of that convergence is
brought into question by the fluctuating standard deviation.
Again, using the large dataset for Slug improves the quality
of the result.

C. Interwalk Analysis
Convergence rates for the parallel sampling walks as a

whole was tested, which proved to be extremely computation-
ally expensive. The sampling data sets ranged from around
20 GB for the runs with 1 motif on the small number of
sequences, to over 500 GB for the runs with 3 motifs on the
large number of sequences. In order to compare the distance
between each walk at every super step, a parallel analysis tool
was developed using C++ and the Message Passing Interface
(MPI) to utilize high performance computing resources. These
results were gathered using a Beowulf HPC cluster with 32
dual quad-core compute nodes (for a total of 256 processing
cores). Each compute node has 64GBs of 1600MHz RAM, two
mirrored RAID 146GB 15K RPM SAS drives, two quad-core
E5-2643 Intel processors which operate at 3.3Ghz, and run
the Red Hat Enterprise Linux (RHEL) 6.2 operating system.
All 32 nodes within the cluster are linked by a private 56
gigabit (Gb) InfiniBand (IB) FDR 1-to-1 network. The code
was compiled and run using MVAPICH2-x [25], to allow
highly optimized use of this network infrastructure.

Even utilizing a HPC cluster and MPI, randomized sampling
was required in order to calculate these results in a reasonable



(a) Slug Small (b) Slug Medium (c) Slug Large

(d) Snail Small (e) Snail Medium (f) Snail Large

Fig. 2. 1 Motif Kolmogorov-Smirnov Analysis after Burn-In. Top row: Slug shows improved convergence rate as the dataset size increases. Bottom row:
Snail similarly converges sooner for larger datasets. In all of the Kolmogorov-Smirnov graphs, the top subgraph represents a y-log view of the average largest
difference between super steps. The solid line is the mean, the dash-dot line is the minimum, the dashed line is the maximum, and the shaded region is the
1st standard deviation. The lower subplot shares the same legend however y values now range between 0 and 1. The lower subplot represents the probability
that the current super step was generated from the same distribution as the previous super step

amount of time. Figures 5, 6 and 7 display the minimum,
average, median and maximum distance between each walk
in a random sample of 100 walks at each super step and were
generated over a period of two days using the HPC cluster.
The distance between any two walks was calculated as the
average difference in the number of samples at each position
within the sequences for each motif.

Similar to the interwalk comparison, runs with two motifs
take significantly longer to converge than those with one or
three motifs, which essentially converge within the first sub-
walk. Also, comparing the interwalk distance of the parallel
sampling walk provides another strong measure with which to
determine if the individual walks have converged to different
local optima or if there is a consistent global optimum across
all walks. For runs with high maximum distances and low
averages and median distance, groups of walks would have
converged to different regions. For runs with high maximum,
median and average distances, walks would have converged
to many different regions without grouping together. For runs
with low maximum, average and median distances, all the
walks grouped to a similar region. In general, for runs with
low average and median distances, we would have generated
enough parallel walks to get an appropriate sampling across
all possible optima, while for those with high median and
averages, either more sampling walks or motifs would be
required to make sure the all regions of the search space are

being sampled correctly (e.g., the large Slug and Snail data
sets with 1 motif).

D. Motif Validation and Analysis

The top ten motifs for Snail and Slug from each walk in
the large datasets that were represented in greater than 10%
of walks, and that occurred with greater than 10% frequency
and which contained the Snail or Slug binding site sequence
(also known as the ’E-Box’ sequence, CAGGTG or CACCTG)
within the combination of the reported motif and its left and
right neighbors were examined. Tables VI, VII, VIII, III, IV,
and V display the walk number, percentage of time the position
was sampled, the gene name, starting nucleotide location, 5
nucleotides before the motif, the motif in capitalized letters,
5 nucleotides after the motif, ending nucleotide location and
if it contained the E-Box. The gene name also includes
the chromosome it was found in (chr2 is chromosome 2,
for example), and the start and end position of the gene
sequence in that chromosome. If multiple motifs were found
for the sequence within that distribution at sample percentages
over the minimum then multiple lines are returned for that
sequence. If none of the motifs for a sequence overcame
the minimum percentage then no motif was reported for the
sequence.

Several of the genes that had the E-box in their promoter
regions were previously known targets or predicted targets.



(a) Slug Small (b) Slug Medium (c) Slug Large

(d) Snail Small (e) Snail Medium (f) Snail Large

Fig. 3. 2 Motifs Kolmogrov-Smirnov Analysis. Top row: Slug shows instability for the small dataset and slower convergence of the large dataset vs the 1
motif runs. Bottom row: Snail also shows instability for the small dataset however Snail converges more quickly than Slug. The 2 motif runs do not converge
as quickly as the 1 or 3 motif runs. However once converged the 2 motif runs on the large Snail dataset do not show the repeated low minimums in the
probability section that the other motif groupings show.

(a) Slug Small (b) Slug Medium (c) Slug Large

(d) Snail Small (e) Snail Medium (f) Snail Large

Fig. 4. 3 Motifs Komogorov-Smirnov Analysis. Top row: Slug is unstable for the small dataset. The rate of convergence is similar to the 1 motif results for
the medium and large datasets. Bottom row: Snail is unstable for the small dataset and converges sooner than Slug for the Medium and Large datasets.



(a) Slug Small, 1 Motif (b) Slug Medium, 1 Motif (c) Slug Large, 1 Motif

(d) Snail Small, 1 Motif (e) Snail Medium, 1 Motif (f) Snail Large, 1 Motif

Fig. 5. This figure presents the min, average, median and max distances between a random sample of 100 walks after every 10,000 steps in the walk for the
1 motif runs. Interestingly, for a medium number of intergenomic regions, the distances between the walks are the smallest. For the small set, the average and
median distances stay low, but the high maximum distances suggest some instability. For the large set, it becomes obvious that one motif is not sufficient,
given the consistently high average and maximum distance between walks.

(a) Slug Small, 2 Motifs (b) Slug Medium, 2 Motifs (c) Slug Large, 2 Motifs

(d) Snail Small, 2 Motifs (e) Snail Medium, 2 Motifs (f) Snail Large, 2 Motifs

Fig. 6. This figure presents the min, average, median and max distances between a random sample of 100 walks after every 10,000 steps in the walk for the
2 motif runs. Some of the medium and large intergenomic region have a noticably longer time to convergence. The distances between walks stays similar for
all size data sets.



(a) Slug Small, 3 Motifs (b) Slug Medium, 3 Motifs (c) Slug Large, 3 Motifs

(d) Snail Small, 3 Motifs (e) Snail Medium, 3 Motifs (f) Snail Large, 3 Motifs

Fig. 7. This figure presents the min, average, median and max distances between a random sample of 100 walks after every 10,000 steps in the walk for
the 2 motif runs. In contrast to the 1 motif runs, the distiance between walks on the three motif runs showed a marked decrease in distance with the larger
datasets, suggesting that there were better matches for more motifs in the alrger data set sizes.

For example, Claudin-7 (CLDN7) as seen in table VII, a cell
membrane protein, was shown to be regulated by Snail binding
to its promoter E-box sequences by Ikenouchi et al. [26]. The
gene desmoplakin (DSP) as seen in table VII, which is another
known target of Snail according to Ohkubo et al. [27], was
also identified in our walks as possessing E-box sequences.
Another gene, ESRP2, while not identified as a direct target of
Snail or Slug, does contain E-box sequences that can be bound
by a protein called Zeb1, which performs similar functions to
Snail and Slug according to Gemmill et al. [28]. This implies
that Snail or Slug could possibly bind to the ESRP2 sequence
in certain contexts as seen in Tables VI, VII and VIII.
Indeed, Snail binds to E-box sequences at the ESRP1 gene
promoter and represses it according to Reinke et al. [29].
While none of the Slug targets have been currently identified
as direct targets, the data does help to pinpoint potential genes
that can be validated by experimental approaches to discover
novel ways of gene regulation. Overall, using gene regulation
data from the microarray lists and then searching for E-box
sequence motifs in those gene promoters, the data can be used
to predict which of these are regulated by direct binding of
Snail and Slug. Once validated, these genes could serve as
future therapeutic targets for drug delivery, and/or biomarkers
for cancer metastasis.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the use of the DNA@Home volunteer
computing project to search for transcription factor binding

sides around genes related to the Snail and Slug family of
Zinc-finger transcription factors. Utilizing over 1,500 volun-
teer computing hosts for a period of two months, 18 different
parallel Gibbs sampling runs were performed with varying
parameters on data sets with up to 994 DNA sequence regions.
To our knowledge, these present the largest scale use of Gibbs
sampling for de novo detection of transcription factor binding
sites.

These runs generated over 2.2 Terabytes of sampling data,
which was in part analyzed using a high performance comput-
ing cluster to determine statistics about the distances between
the parallel sampling walks. This information provides insight
as to how well these runs were performing sampling, in terms
of convergence regions of local optima or a singular region of
a global optima. This is valuable information for determining
how many motifs to search for, if the burn-in period has
completed, and if the runs have generated enough samples
to provide a reliable distribution of likely transcription factor
binding sites. The use of parallel sampling walks allows Gibbs
sampling to be performed at much larger scales and to more
quickly gather samples.

This work provided a large scale example of the capabilities
of DNA@Home, and we wish to incorporate the various
metrics utilized in the analysis of this sampling data into a web
based user interface for project scientists. Further, we plan to
open DNA@Home up to external researchers, allowing them
to submit their own FASTA files to perform their own Gibbs



TABLE III
E-BOX SLUG LARGE 1 MOTIF STEP 30,000

Walk Count % Hits Gene Offset Motif cacctg caggtg
426 13.27 FAM136A chr2 70528720 70529720 83 cacctGCCGCCgagga True False
426 13.69 WWOX chr16 78132826 78133826 833 caggtGCCTCCacagt False True
426 14.31 TMEM116 ERP29 chr12 112450523 112451651 921 caggtGCCGCCggggc False True
426 15.33 GNS chr12 65152726 65153726 278 caggtGGCGGGggctg False True
426 16.41 MYD88 chr3 38179468 38180468 851 caggtGGCGGCcgact False True
426 19.34 BST2 chr19 17515884 17516884 233 caggtGGCGGCctggg False True
426 19.97 COQ9 CIAPIN1 chr16 57480836 57481869 419 cacctGCCGCCtgggc True False
663 10.88 ZNF57 chr19 2906605 2907605 737 cacctGGAAAGttctg True False
966 13.68 PIN1 chr19 9945382 9946382 25 caggtGGGAAGaggga False True

TABLE IV
E-BOX SLUG LARGE 2 MOTIFS STEP 70,000

Walk Count % Hits Gene Offset Motif cacctg caggtg
213 10.36 TMEM41A chr3 185216345 185217345 287 cacctGCCTCCagcct True False
296 10.89 BST2 chr19 17515884 17516884 233 caggtGGCGGCctggg False True
299 10.89 WWOX chr16 78132826 78133826 833 caggtGCCTCCacagt False True
696 14.16 RORC chr1 151803848 151804848 11 cacctGGGAGGgcctg True False
696 17.86 LCLAT1 chr2 30669636 30670636 615 caggtGGGAGGctgga False True
697 13.79 PIN1 chr19 9945382 9946382 25 caggtGGGAAGaggga False True

TABLE V
E-BOX SLUG LARGE 3 MOTIFS STEP 30,000

Walk Count % Hits Gene Offset Motif cacctg caggtg
423 13.27 FAM136A chr2 70528720 70529720 83 cacctGCCGCCgagga True False
423 13.69 WWOX chr16 78132826 78133826 833 caggtGCCTCCacagt False True
423 14.33 TMEM116 ERP29 chr12 112450523 112451651 921 caggtGCCGCCggggc False True
423 15.29 GNS chr12 65152726 65153726 278 caggtGGCGGGggctg False True
423 16.40 MYD88 chr3 38179468 38180468 851 caggtGGCGGCcgact False True
423 19.38 BST2 chr19 17515884 17516884 233 caggtGGCGGCctggg False True
423 19.94 COQ9 CIAPIN1 chr16 57480836 57481869 419 cacctGCCGCCtgggc True False
695 10.86 ZNF57 chr19 2906605 2907605 737 cacctGGAAAGttctg True False
962 13.67 PIN1 chr19 9945382 9946382 25 caggtGGGAAGaggga False True

TABLE VI
E-BOX SNAIL LARGE 1 MOTIF STEP 30,000

Walk Count % Hits Gene Offset Motif cacctg caggtg
392 14.63 TPD52 chr8 81082845 81083845 412 cacctGGAGGGacgag True False
396 22.80 RABAC1 chr19 42463028 42464028 841 cacctGGAGGGcttgc True False
429 27.44 FAM195A chr16 691619 692619 519 caggtGGAGGGccggc False True
469 13.31 RALGAPA2 chr20 20508402 20509402 127 caggtGGAAAGataag False True
491 11.01 MYL7 chr7 44180416 44181416 447 cacctGGGAGAccgct True False
499 20.34 SLC22A17 chr14 23821160 23822160 572 caggtGGGAGGgaggg False True
900 19.24 ESRP2 chr16 68269636 68270636 912 cacctGGGAAAgggga True False
946 15.43 STX3 chr11 59522031 59523031 979 cacctGGGAAGcgctc True False

1224 26.68 TXNRD2 chr22 19928859 19929859 174 cacctGGGAAGggggc True False

TABLE VII
E-BOX SNAIL LARGE 2 MOTIFS STEP 30,000

Walk Count % Hits Gene Offset Motif cacctg caggtg
298 11.78 IVD chr15 40697185 40698185 989 caggtGAGGAGactga False True
298 14.18 CLDN7 chr17 7165764 7166764 206 caggtGAGGAGgaaga False True
298 18.90 DSP chr6 7541369 7542369 361 caggtGGGGAGgggcg False True
298 22.82 MKL2 chr16 14164695 14165695 257 caggtGAGAAGgaggc False True
430 10.48 C10orf35 chr10 71389502 71390502 504 caggtGGGAGGaaacc False True
471 14.52 ESRP2 chr16 68269636 68270636 912 cacctGGGAAAgggga True False
471 17.27 SLC22A17 chr14 23821160 23822160 572 caggtGGGAGGgaggg False True
769 16.82 STX3 chr11 59522031 59523031 979 cacctGGGAAGcgctc True False
771 37.80 TXNRD2 chr22 19928859 19929859 174 cacctGGGAAGggggc True False
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TABLE VIII
E-BOX SNAIL LARGE 3 MOTIFS STEP 30,000

Walk Count % Hits Gene Offset Motif cacctg caggtg
383 15.59 SGK3 chr8 67686915 67687915 713 caggtGGAGGGacccc False True
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501 20.36 SLC22A17 chr14 23821160 23822160 572 caggtGGGAGGgaggg False True
891 19.14 ESRP2 chr16 68269636 68270636 912 cacctGGGAAAgggga True False
930 15.40 STX3 chr11 59522031 59523031 979 cacctGGGAAGcgctc True False

1208 26.60 TXNRD2 chr22 19928859 19929859 174 cacctGGGAAGggggc True False
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