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Abstract—This paper examines the use of three different back-
ground subtraction algorithms — Mixture of Gaussians (MOG),
ViBe, and Pixel-Based Adaptive Segmentation (PBAS) — to
detect events of interest within uncontrolled outdoor avian nesting
video for the Wildlife@Home project. Many computer vision
techniques are unsuccessful in this domain due to low frame-
rates and resolution of battery powered surveillance cameras
in combination with the cryptic coloration (camouflage) of the
animals. Modifications to ViBE and PBAS are presented which
provide more robust results in this challenging video, and address
issues caused by the cryptic coloration of the species being
monitored by the project. These algorithms were run on over 250
hours of video and compared to human observations generated
by Wildlife@Home’s project scientists and volunteer citizen sci-
entists. All three algorithms provide accurate detection of events
however we see much fewer false postives from the modified
versions of the ViBe and PBAS algorithms. This is especially true
for Interior Least Tern (Sternula antillarum) and Piping Plover
(Charadrius melodus) video, which do not suffer from as much
moving vegetation as the Sharp-Tailed Grouse (Tympanuchus
phasianellus) footage. These results provide initial justification
for utilizing Wildlife@Home’s 2,000+ volunteered computers to
analyze the project’s 85,000 hours of avian nesting video, so
that this information can be integrated into the Wildlfe@Home
user interface. Further, the videos and human observations used
to test these algorithms have been made available as part of
Wildlife@Home’s first data release, to encourage future study
by computer vision researchers.

I. INTRODUCTION

Wildlife@Home1 [1], [2] is a volunteer computing project
in which citizen scientists and wildlife experts are presented
videos taken from at the nests of various species of birds. Cur-
rently, users have the option of viewing Sharp-Tailed Grouse
(Tympanuchus phasianellus, an indicator species which can
represent the ecological health of a region), Interior Least
Tern (Sternula antillarum, a federally endangered species),
or Piping Plover (Charadrius melodus, a federally threatened
species). Each of these species have different nesting behaviors

1http://volunteer.cs.und.edu/csg/wildlife/

Fig. 3. Sample Sharp-Tailed Grouse footage. The nest is marked with a white
oval.

and users are tasked with classifying them. Examples of
behaviors are On Nest, Off Nest, Brooding, Flying, Foraging,
and Feeding. While users are observing the nets, they create a
time-series for each video specifying when these events begin
and end. Each event in the time-series has a type, start time
and end time (see Figure 1).

Such camera studies are popular in the field of avian
ecology as they can reduce researcher impacts on animal
behavior and also monitor animals in remote locations [3],
[4]. Unfortunately, many of these studies are hampered by
small sample sizes, where few have studied more than 100
nests [4], limiting the biological inferences that can be made.
In order to overcome these challenges, Wildlife@Home has
been developed to employ both volunteer computing and
crowd sourcing to quickly analyze wildlife video, as well as to
investigate automated video analysis strategies using computer
vision techniques.

The Wildlife@Home project has accumulated over 85,000
hours of 24/7 uncontrolled outdoor surveillance video. This
amount of data becomes problematic for humans to classify,
even with software tools to help create and store event data.



Fig. 1. An example of Wildlife@Home’s video viewing interface. Users are shown 30 minute to 2 hour long nesting videos, and can specify the start and
end time for various events of interest, and provide tags and comments for additional detail. Users can also specify how difficult it was to determine events
for the video and discuss segments of the video on the project’s message boards.

(a) Sample I (b) Sample II (c) Sample III

Fig. 2. Sample sunrise Interior Least Tern footage. The nest is marked with a white oval.

A lot of time is spent viewing regions of the video where
the birds are not present at all or where a bird is present
but highly inactive for long periods of time. This can lead to
problems with scientist precision and focus. Users watching
the video use the scrub bar to move more quickly through
the video, especially uninteresting potions, and this can cause
missed events. Scientists tasked with classifying long periods
of uninteresting video can more quickly tire and lose focus.

This paper investigates the use of various background sub-
traction techniques for the detection of avian nesting behav-
iors, especially in highlighting interesting or active portions
of the video. Background subtraction is commonly used in
surveillance video as a technique for segmenting objects of
interest from a scene [5], [6]. By extracting segments of
the collected video with an abnormal amount of foreground

activity, it is possible to algorithmically present scientists with
video containing classifiable events and filter out video where
no events occur.

Given the diversity of species and nest locations, pre-
liminary results find that algorithm performance is highly
dependent on the amount of background movement, camera
brightness, and cryptic coloration in a video. Using modern
background subtraction techniques, such as Mixture of Gaus-
sians (MOG) [7], and modified versions of the ViBe [8] and
Pixel-Based Adaptive Segmentation (PBAS) [9] algorithms,
it is possible to show a strong correlation between scientist
observed events and those calculated with background subtrac-
tion. By confidently narrowing the amount of video scientists
are watching, it will be possible to focus on showing worth-
while video segments and increase user incentive and focus.



Section II presents modern techniques used for common
background subtraction problems. Section III covers the ap-
proach we took to extracting regions of the video with ac-
tivity and how this is implemented. Performance results and
limitations of the algorithms are in described Section IV. The
data release and open source code developed for this work are
given in Section V. Finally, Section VI concludes with future
work and a discussion of the next steps to collecting more
results, improving the algorithms, and use of the data.

II. RELATED WORK

This section discusses approaches for background subtrac-
tion, or as it is sometimes referred, foreground segmenta-
tion. The most common methods along with more modern
approaches are presented. This includes the running Gaussian
average (II-A), Mixture of Gaussians (II-B), ViBe (II-C), pixel-
based adaptive segmentation (II-D), and a couple techniques
used in a similar problem domain (II-E).

A. Running Gaussian Average

Running Gaussian average is one of the most basic back-
ground subtraction techniques [5], [6] and has also been
effective in applications with a static background such as traffic
cameras [10], [11]. This technique works by storing a model
of the background Bt and calculating the distance of each
new image It from the background model. If this distance
is larger than a provided threshold, τ , then the pixel at that
location is marked as foreground. This threshold can be seen
in Equation 1.

|It − Bt| < τ (1)

The background model can then be updated by using an
exponential moving average which slowly adapts to changes:

Bt+1 = α · It + (1− α) · Bt (2)

Where α is the rate at which the model adjusts and t is the
current frame index.

There are a few effective methods for cleaning the results
from a simple running Gaussian average as pointed out in [5].
The first is to clean up the foreground mask with some type
of filter. Both a median filter and a open/close filter work
well. If a pixel has been marked as foreground for too many
consecutive frames it can be set in the background model to
prevent long standing false detection in the vent of a sudden
lighting change. Finally if a pixel is rapidly changing from
foreground to background it can be masked to prevent sporadic
and unreliable detection.

B. Mixture of Gaussians (MOG)

MOG is a widely used and robust background subtraction
algorithm used in OpenCV [12]. It is based on modeling the
background pixels as a combination of surfaces [7] which is
further described as a Gaussian mixture model. The probability
of a pixel belonging to the background is described as a sum
of Gaussians:

fX(X|Φ) =

K∑
k=1

P (k) · fX|k(X|k, θk) (3)

where P (k) is the probability of the surface k appearing in
the pixel view and fX|k(X|k, θk) is the Gaussian distribution
for surface k with Φ being the set of theta input parameters
(θk = µk, σk) for the Gaussian distributions describing each
surface.

Power and Schoonees note that P (k), µk, and θk are
typically estimated with running averages calculated at each
frame [7]. Also, fX|k(X|k, θk) for a pixel value x can be
estimated by a Boolean value, true if x is within 2.5 standard
deviations of the mean, false otherwise.

With MOG, similar techniques to those in Section II-A can
be used to clean results. The use of an open/close filter is
especially useful for removing noise.

C. ViBe

ViBe [8] is a background subtraction algorithm based on
random substitution and spatial diffusion. Van Droogenbroeck
et al. approach background model formulation with stochas-
ticity in order increase the robustness of their algorithms and
increase the range of background pixels stored in the model.
Since ViBe does not rely on statistical modeling of pixel
history the authors believe it can better match a pixels true
history by actually using past pixel values. This means ViBe
can fit multi-modal pixel histories and better adapt to slight
background movement.

To model the background, ViBe stochastically stores 20
previous pixel values and compares new pixel values to this
pixel history. If a pixel value matches (see Equation 1) two
of the stored values then it is classified as part of the back-
ground, otherwise it is masked as foreground. This method of
classification allows for up to 10 different background models
to be fit by ViBe.

As alluded to earlier, updating the background model is a
stochastic processing in ViBe. Each new observed pixel value
has a 1/16 chance to overwrite a random position in the 20
previously stored pixel values. Previous pixel values are not
stored as a FIFO queue since this implies some linearity to
background pixel occurrence which is typically not the case
in real world data. If a pixel history is updated there is another
1/16 chance to update one randomly selected neighboring
pixel. This random update process allows for an adaptive
model that can will slowly absorb foreground object that have
become part of the static background.

ViBe employs the use of an open/close filter to remove noise
from the foreground mask as in II-A. Van Droogenbroeck et
al. also suggest using the filtered mask as the update mask
such that ViBe will add the unwanted noise to the background
model.

D. Pixel-Based Adaptive Segmentation (PBAS)

PBAS, introduced by Hofmann et al. [9], is a foreground
segmentation algorithm that uses the stochastic portions of



ViBe [8] along with pixel-based adaptive thresholding and
updating. PBAS adjusts thresholds to the pixel variance in
the image by dynamically setting the threshold, τ , as shown
in Equation 1, and the probability of pixel update from
Section II-C.

Hofmann et al. measure background dynamics by calcu-
lating the mean from a stored array of previously observed
minimum pixel differences [9]. When background dynamics
are high, a larger threshold, τ , can be used to reduce noise
and the probability for updating the background model can be
increased to allow for quicker absorption of false foreground
detection. By contrast, when background dynamics are low, a
smaller and more precise τ can be used with a smaller update
probability to keep foreground detections in the foreground
longer. This means PBAS allows for strong foreground seg-
mentation on pixels with a highly static background while
simultaneously using a more lenient set of parameters on
highly dynamic regions of the image such as water or foliage.

E. Background Subtraction on Distributions

Work in a similar domain, the observation of avian be-
haviors, has been done by researching background subtrac-
tion techniques as a method for observing birds visiting a
feeder [13], [14]. This environment naturally has an active
background with foliage movement, however birds drawn
to feeders are not typically in their ideal environment for
camouflage and since they are feeding tend to be more active
than when on the nest. The technique proposed in [13] was
designed to solve noise generated by background movement
by looking at pixel neighborhood distributions but is more
computationally expensive than pixel-based approaches.

F. MotionMeerkat

MotionMeerkat is a general use tool to detect motion
in ecological environments created by Ben Weinstein [15].
The tool is used to alleviate the process of video stream
data analysis by extracting frames with motion from a video
file. MotionMeerkat can either use MOG (Section II-B) or
a version of Running Gaussian Average (Section II-A) for
foreground segmentation and then uses blob detection and
thresholding to determine if a foreground object it present.
Weinstein’s results show that MotionMeerkat is successful in
many ecological environments but is still subject to problems
such as rapid lighting changes, and camouflage.

III. METHODOLOGY

The goal of this research is to determine which algorithms
can best highlight regions of uncontrolled outdoor video with
interesting events. This ideally can act as a filter and help sci-
entists focus on segments of video that require their attention
and letting them skip less interesting segments of video. The
background subtraction methods need to be resistant to noise
and handle quick correction of camera lighting problems while
still being sensitive enough to detect the motion of a small to
medium sized animal with cryptic coloration. The usefulness
of these algorithms is sensitive to the number false positives

and false negatives. Too many false positives and there many
not be a significant length of video that can be classified as
uninteresting, while too many false negatives may leave many
interesting events unclassified and unwatched. An example of
this is observed when comparing scientists’ observations to
positive events from the algorithms, as in Figure 4. An almost
continuous stream of false positives can occur when vegetation
moves in the wind when the grouse is not even at the nest (see
Figure 4a), but on less windy days we see increased agreement
between the two classifications (see Figure 4b).

Three different algorithms were evaluated for their ability
to accurately detect motion in Wildlife@Home’s Interior Least
Tern, Piping Plover and Sharp-Tailed Grouse video. MOG (see
Section II-B) was chosen as the baseline for performance, as
it is used as a standard for many new background subtraction
implementations [5], [6], [9], [13], [17], [18] and has been
successfully used in real world applications [19].

Modified versions of ViBe [8] and PBAS [9] were imple-
mented and compared to MOG. ViBe is a good fit for this
problem space as it is non-parametric and can be quickly
initialized to prevent a large number of initial false positives.
PBAS is an algorithm that adjusts its thresholding and update
parameters on a pixel-by-pixel basis. PBAS is also good for
this problem, where certain parts of the image are very noisy
and at times entire sections of the video are polluted with
dynamic lighting changes. PBAS will dynamically increase the
foreground classification threshold during portions of a video
affected by lighting changes and can learn to ignore regions of
a video with large background variance such as in the grouse
video (see Figure 3) where grass movement will span a large
area of the video (100’s of pixels) and pixel neighborhoods
are not enough to detect the movement.

Modifications were made to improve performance on the
noisy video and subjects with cryptic coloration. Initialization
of ViBe and PBAS were adjusted to be second-frame-ready
by adding the minimum number of values to the background
model to match the first frame and filling the rest of the
background model with values from random locations in
the frame. This initialization allows for fast adaptation to
subsequent frames if the background has a lot of motion while
maintaining the minimum requirement to match the likely
similar following frame. An open/close filter was also added
to reduce foreground detection noise in the output mask. The
mathematical morphology removes small unconnected bits of
noise while maintaining the larger connected regions. This
prevents many false detections due to video compression and
camera induced noise. Depending on the video resolution filter
size, this may be adjusted accordingly. Finally, in order to
improve detection of birds, we use the convex hull of any
connected foreground regions as the foreground mask. Since
much of the birds are a similar color to their environment,
generally only small areas are detected such as the head,
tail feathers, and shadow, and much of the body can remain
missing or segmented. The addition of a convex hull to
connected foreground regions highlights bird movements and
increases algorithm confidence. The convex hull may also be



(a) Timeline I (b) Timeline II

Fig. 4. Timelines showing the number of false positives in a windy grouse video (4a) against those in a less windy grouse video (4b). The highlighted
regions show time segments from the background subtraction results where there is no bird on the nest. These timelines were created using the Google Charts
API [16] and are easily embedded in the Wildlife@Home user interface.

used in the future to detect extreme lighting changes since this
will also emphasize large scene changes.

The conversion from the foreground mask to calculated
events is done with time-series analysis. An event is defined
as a specified video segment marked with a start and an
end time. Foreground pixel counts are taken as a series of
data points, and these are smoothed by using an exponential
moving average. This further reduces detection noise and
sporadic peaks. Once the data is smoothed its mean (µ) and
standard deviation (σ) are calculated and used to determine
which frames have more than 3σ foreground pixels using the
inequality in Equation 5. If this is the case, it is marked as
a significant event, otherwise it is ignored. Experimentation
can be done to determine a good threshold for the standard
deviation.

The equation for the exponential moving average is:

mt = α · xt + (1− α) ·mt−1 (4)

where mt is the mean at time unit t, xt is the number of
foreground pixels at time t, and α is the weighted decrease
or learning rate. As α → 1 the new data is more heavily
weighted. An example this time-series data compared to when
scientist marked events occurred can be seen in Figure 5.

The calculation of significant foreground events is done
using the following threshold inequality:

xt > µ+ 3σ (5)

This threshold is a good indication of foreground activity
even when the video has a moderate amount of noise since
noisy regions are either smoothed or taken into consideration
in the time-series mean. The calculated foreground activity
can then be compared to scientists to determine algorithm
accuracy, as shown in Figure 4. By calculating events from
regions with an abnormal amount of foreground pixels, a
measure for the amount of foreground activity taking place
is provided. This activity can then be compared to scientists
to determine the accuracy of each background subtraction
algorithm as shown in Figures 4 and 5.

An example of the correlation between background subtrac-
tion events and scientist observed events can be see in Figure 5.

TABLE I
ALGORITHM ACCURACY VS EXPERT SCIENTISTS ON TERN AND

PLOVER NESTS

Event Type Event Count MOG ViBe PBAS

Preen 180 170 138 147
Scratch 4 4 2 2
Not In Video 732 632 578 607
Nest Exchange 22 16 16 16
Foraging 82 71 52 56
Adult-to-Adult Feed 20 6 6 6
Nest Defense 4 4 4 4
Predator 12 10 7 9
Non-Predator Animal 22 16 15 15
Unspecified 350 93 66 78
On Nest 932 665 582 608
Off Nest 2312 1960 1775 1876

The arrows indicate human observed events in comparison
with the time-series for each of the three algorithms. The data
in these two examples are highly correlated with little noise
and very few false detections. It can also be observed that
PBAS is very quick to adapt to changes while ViBe has the
largest detection emphasis among the three algorithms.

IV. RESULTS

The three background subtraction algorithms were run
against a set of 105 tern and plover videos and 109 grouse
videos. The plover and tern video totals 77.05 hours, and
the grouse video totals 205.39 hours. Video lengths range
anywhere from 30 minutes to 2 hours in length. Each algorithm
runs at more than 10 frames per second (the recording frame
rate) on a hyperthreaded 3.5 GHz core and is considered
capable of real-time processing. Results were collected using
a Mac Pro and 12 logical cores, which took approximately 48
hours. They were compared to observations made by project
expert scientists and volunteer citizen scientists to determine
algorithm accuracy.

A. Detecting Events with Background Subtraction

Tables I, III, II, and IV present how well each algorithm
matched up to project scientists and volunteers for sharptailed
grouse, and piping plover and least tern combined. Piping
plover and least tern results were combined as the birds and



(a) Sample I (b) Sample II

Fig. 5. Example of event and foreground pixel count correlation. Red arrows indicate a scientist observed event and lines indicate foreground pixel count for
each algorithm.

TABLE II
ALGORITHM ACCURACY VS CITIZEN SCIENTISTS ON TERN AND

PLOVER NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 82 79 79 79
Nest Exchange 4 2 2 4
Adult-to-Adult Feed 14 14 14 14
Non-Predator Animal 16 16 14 14
Unspecified 10 10 10 10
On Nest 140 138 112 112
Off Nest 146 144 143 143

TABLE III
ALGORITHM ACCURACY VS EXPERT SCIENTISTS ON GROUSE

NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 284 274 258 270
Eggshell Removal 6 4 5 5
In Video 130 128 129 129
Predator 6 5 5 5
Unspecified 2 2 2 2
Attack 2 2 2 2
Physical Inspection 60 52 56 56
Observation 44 41 39 41
On Nest 216 196 174 178
Off Nest 492 470 439 461

TABLE IV
ALGORITHM ACCURACY VS CITIZEN SCIENTISTS ON GROUSE

NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 308 298 261 274
Nest Defense 2 2 2 2
Predator 14 12 10 12
Non-Predator Animal 2 2 1 2
Unspecified 2 0 2 2
Attack 22 18 20 21
Physical Inspection 46 46 45 46
Observation 8 7 7 8
On Nest 340 317 249 253
Off Nest 588 576 506 532

TABLE VI
ALGORITHM FALSE POSITIVES VS EXPERT SCIENTISTS

MOG ViBe PBAS

Species µ σ µ σ µ σ

Grouse 139.67 144.76 74.31 95.92 73.83 100.64
Tern 5.78 35.37 2.76 15.86 1.58 6.89
Plover 4 7.63 0.50 1.07 0.63 1.41

environments are highly similar, and both species are being
observed for the same set of events. The Event Count column
shows the total number of each event that occurred in the set
of videos analyzed, and the following columns present how
many of those events the background subtraction algorithm
found.

Any background subtraction detected events that occur
within 30 seconds of the start or end time of a scientist
observed event are marked as a match. Multiple matches to the
same start and end event from the same scientist are ignored.
Since all three algorithms are adaptive, learning takes place in
each algorithm where it will begin to ignore bird presence and
absence on the nest. Event start and end times that take place
within the first 10 seconds of the beginning of the videos were
ignored as the algorithms did not have time to learn an initial
background yet.

Table V compares results from combining all three back-
ground subtraction algorithms. The Any Alg column shows the
number of events that matched any one of the three algorithms,
and the All Alg column shows the number of events that
matched all three algorithms. Using events marked by any
algorithm provided a small increase in events detected over
PBAS for all event types, however using a consensus showed
a dramatic decrease in the number of events found. This
decrease is indicative that the three different algorithms are
not finding overly similar areas of activity within the videos.

B. Analysis of False Positives

Tables VI and VII provide an analysis of false positives
generated by the background subtraction algorithms. False



TABLE V
ALGORITHM ACCURACY WITH CONSENSUS VS EXPERT SCIENTISTS ON TERN AND PLOVER NESTS

Event Type Event Count Any Alg All Alg MOG & ViBe MOG & PBAS ViBe & PBAS

Preen 180 174 137 138 143 137
Scratch 4 4 2 2 2 2
Not In Video 732 635 576 576 606 576
Nest Exchange 22 16 16 16 16 16
Foraging 82 73 51 52 54 51
Adult-to-Adult Feed 20 6 6 6 6 6
Human 2 0 0 0 0 0
Nest Defense 4 4 4 4 4 4
Predator 12 11 6 6 8 7
Non-Predator Animal 22 19 12 12 14 13
Unspecified 350 94 66 66 77 66
On Nest 932 669 572 580 606 572
Off Nest 2312 1974 1763 1769 1868 1763

TABLE VII
ALGORITHM FALSE POSITIVES VS CITIZEN SCIENTISTS

MOG ViBe PBAS

Species µ σ µ σ µ σ

Grouse 118.27 136.17 53.14 74.65 53.90 82.10
Tern 0.41 1.74 0.22 0.80 0.15 0.46

positives were counted by the number of computer classified
events that occur during a user classified Not In Video event.
Results are reported as the mean (µ) and standard deviation
(σ) of false positives during any Not in Video event by any
scientist over all videos tested for that species. Videos without
a Not In Video event were ignored to prevent padding the
results. A 10 second buffer is used after the start and before
the end of the Not In Video events to avoid counting edge case
movement as a false positive. This was used as a measure
for false positives since at any other time a detection may
correspond to an unmarked event, such as motion from the
bird on the nest.

C. Effectiveness of Background Subtraction

The initial background subtraction results in Tables I, II, III,
and IV show that background subtraction is accurate enough to
be a reliable detection method for this type of video. Especially
in the case of the Not In Video, On Nest, and Off Nest events,
the detection accuracy is high enough to be useful for decision
making. The other event sample sizes are still too small,
requiring more results to be collected. MOG has the highest
accuracy on both the tern and plover video however we also
see the highest false postive rates from MOG across all species
types. Due to MOG’s high rate of false positives, PBAS is
likely the best overall performing algorithm due to its low
false positive rate and high accuracy. Utilizing results from
any algorithm (Table V) shows a slight improvement over in
performance over any individual algorithm. We also see than
PBAS has a low number of false positives on the tern and
plover observations (Tables VI and VII).

The Sharptailed Grouse have the highest average number
of false positives (Tables VI and VII) and by far the highest

standard deviation of false positives. The high variance in
the grouse results suggest that some videos may have a
low number of false positives, presumably indicating better
precision on less windy videos. This also indicates that the
high accuracy on the grouse videos (Tables III and IV) may
not solely be false positives due to moving foliage.

Another major cause for algorithm inaccuracy and large
variance in false positives (especially in the Least Tern sam-
ples) is from camera lighting autocorrection discussed in
Section III and seen in Figure 6. Changes in scenery brightness
from transitions in time of day or significant overhead cloud
movement cause the camera to adjust brightness and can cause
large scale false foreground detection. If the camera rapidly
and repeatedly changes the brightness we see regions of video
that the foreground algorithms cannot adapt to as shown in
Figure 6. Due to the nature of PBAS, it adjusts to the rapid
brightness changes but this still causes false negatives if a
scientist observed event does occur during or shortly after the
brightness adjustments.

Other detection errors are caused by video compression
noise, and species cryptic coloration. The original archival
Wildlife@Home videos taken by the field cameras are com-
pressed by the hardware in part due to storage reasons. With
these background subtraction algorithms working on moderate
to heavy compression, false positives are caused during transi-
tions between intra coded frames. More sensitive events such
as preens and scratches can be difficult to detect due to the
small amount of motion involved (typically just body rotation
and head movement) given the camera distance, along with the
cryptic coloration of the species. With the surrounding area
taking on such a similar color to the bird a simple preen or
scratch may easily go undetected by a background subtraction
algorithm.

It is also worth noting that many detected events may not
line up with the start or end time of a scientist observation but
may still be a cause of bird motion. For example in Figure 4b,
no events occur while the bird is off the nest but we see
sporadic events while it is on the nest, this could be caused by
bird adjustment on the nest or unmarked bird grooming events.
The frequency of events occurring during a video may also



(a) Sample I (b) Sample II (c) Sample Issue Foreground Count

Fig. 6. Rapid and repeating brightness adjust caused by overhead cloud movement. Brightness is alternated multiple times per second creating a messy
foreground pixel timeline show in Figure 6c. ViBe fails to adapt to the rapid changes and both MOG and PBAS become ignorant to small pixel changes
required to detect bird movement.

serve as an additional indicator of bird presence, and merits
further investigation.

V. REPRODUCIBILITY

All the videos and human observations used to generate
these results have been made available as part of the first
Wildlife@Home data release2. The data is being made avail-
able not only to allow external researchers validate these
results, but also because it is an extremely valuable resource
for computer vision researchers interested in uncontrolled
outdoor video. We hope this data release will encourage further
study in detecting animals and events in this type of video.
Further, all the Wildlife@Home source code for both the
project’s webpages and video analysis applications is made
freely available on GitHub3 for use by other researchers, both
in computer science and wildlife ecology.

VI. CONCLUSION

This paper presents a preliminary analysis of the use of
different background subtraction algorithms (Mixture of Gaus-
sians, modified Pixel-Based Adaptive Segmentation and mod-
ified ViBe) for detecting events within uncontrolled outdoor
avian nesting video. The effectiveness of these algorithms was
obtained using over 250 hours of video along with human
observations gathered by project experts and volunteer citizen
scientists at the Wildlife@Home project [1], [2]. Initial results
show that MOG has the highest accuracy but suffers from
the largest number of false positives, while PBAS and ViBe
have good accuracy while maintaining a low false postive
rate. Both PBAS and ViBe reach high enough accuracy to
be a promising technique for detecting video segments that
are most interesting and important for an expert and citizen
scientist to observe and classify. This opens up the possibility
of using them as filters to dramatically reduce the amount of
time spent by scientists analyzing the 85,000 hours of video
at Wildlife@Home.

The videos used in this work were processed on a Mac Pro
across 12 logical cores and proved adequate for retrieving this

2http://volunteer.cs.und.edu/csg/wildlife/data releases.php
3https://github.com/travisdesell/wildlife at home

sample of results in just over 48 hours, however processing
all 85,000 hours of video at Wildlif@Home is unfeasible.
Due to these promising initial results, we are currently using
the Berkeley Open Infrastructure for Network Computing
(BOINC) [20] to harness Wildlife@Home’s 2,000+ volun-
teered computers to collect background subtraction data for
the entire data set.

In addition to analyzing more videos, improvements need
to be made in order to accurately process detect segments
of interest within the videos. Rapidly changing brightness
inhibits the background subtraction algorithms. Possibilities
for normalizing scene brightness, such as Retinex [21], [22] or
adjusting the exponential moving average filter to mark video
segments with extreme foreground detection (e.g., larger then
20% to 30% of the frame) remain as future work. More in-
depth improvements could involve taking nest location into
consideration and increasing the importance of foreground
pixels located around the nest. Since cameras are placed strate-
gically facing the nests we can safely assume nest location is
close to the center of the frame and can easily scale foreground
pixel importance accordingly.

Finally, these background subtraction results will be inte-
grated into the interface used by project and citizen scientists
to gain human feedback about how the correct algorithms are
about marking event occurrences. This will not only help con-
firm the computed results but will also notify users to a pos-
sible upcoming event, which could improve human accuracy.
This will provide a first step towards fully using automated
strategies as a filter before showing the Wildlife@Home videos
to scientists, allowing them to reliably skip segments of the
videos where there is no animal activity.
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