
Detecting Wildlife in Uncontrolled Outdoor Video
using Convolutional Neural Networks

Connor Bowley∗, Alicia Andes†, Susan Ellis-Felege†, Travis Desell∗
Department of Computer Science∗

Department of Biology†

University of North Dakota
Grand Forks, North Dakota 58202

Email: connor.bowley@und.edu, alicia.andes@my.und.edu, susan.felege@email.und.edu, tdesell@cs.und.edu

Abstract—This paper explores the use of Convolutional Neural
Networks (CNNs) to detect interior least tern in uncontrolled
outdoor videos for the Wildlife@Home project. To be able to
use CNNs on this video, this work developed strategies to bridge
the gap between video collected by wildlife biologists and the
methodlogies common for training and testing CNNs by utilizing
a striding methodology to extract positive and negative training
examples of a fixed size. Then in order to efficiently run trained
CNNs over full videos, software was developed using OpenCL
which was capable of utilizing multiple GPUs and other OpenCL
capable compute devices concurrently. It was also shown that an
already trained CNN can be further refined by training it further
on new imagery, without having to retrain the whole network
from scratch, saving significant time. Further, while the CNNs
trained were only for detection of interior least terns, they show
promise for actually detecting behavior, as obvious peaks resulted
for periods of video when a tern was in flight. To the authors’
knowledge, this is the first attempt to utilize CNNs for the task
of detecting wildlife in uncontrolled outdoor video.

I. INTRODUCTION

Over 100,000 hours of uncontrolled outdoor video of four
different species – blue winged teal (Anas discors), interior
least tern (Sternula antillarum), piping plover (Charadrius
melodus) and sharptailed grouse (Tympanuchus phasianellus
– have been collected for Wildlife@Home, with more being
collected each field season. Such camera studies are popular
in the field of avian ecology as they can reduce researcher
impacts on animal behavior and also monitor animals in
remote locations [1], [2]. Unfortunately, many of these studies
are hampered by small sample sizes, where few have studied
more than 100 nests [2], limiting the biological inferences
that can be made. In order to overcome these challenges,
Wildlife@Home has been developed to employ both volunteer
computing and crowd sourcing to quickly analyze wildlife
video, as well as to investigate automated video analysis
strategies using computer vision techniques.

Each of these species have different nesting behaviors and
users (either volunteers through a crowd sourcing interface, or
project scientists through a more advanced web portal) have
been tasked with classifying them. Examples of behaviors are
On Nest, Off Nest, Brooding, Flying, Foraging, and Feeding.
While users are observing the nests, they create a time-series
for each video specifying when these events begin and end.
Each event in the time-series has a type, start time and end

time (see Figure 1). These users have provided a large body
of observations, which has led to Wildlife@Home’s first data
release of human annotated video1 [3].

The goal of Wildlife@Home is not simply to crowd source
the observation of this video, but rather to use these hu-
man observations to train effective computer vision algo-
rithms to automate the analysis of this video. In order for
Wildlife@Home’s ecological researchers to be able to under-
stand this vast amount of information and evaluate biological
hypotheses of interest, these automated techniques are required
due to the sheer scale of the data and the fact that human
viewers cannot reliably watch it and make observations within
it in a reasonable amount of time. Previous work has been
done utilizing background subtraction methods to detect areas
of interest within these videos [3], [4], however this work
was limited in its applicability due to the fact that changing
weather conditions and wind can drastically skew results.
Further, background subtraction methods only have the ability
to determine if activity is occuring, and not automatically
detect different types of behavior.

In order address the limitations of background subtraction,
this paper investigates the preliminary use of convolutional
neural networks (CNNs) to detect interior least tern within
video from Wildlife@Home. In particular, this problem comes
with a set of unique challenges which are not addressed in
typical CNN literature. First, the videos used have significantly
higher resolution than typical input images to CNNs. The
videos used in this study were 704x360 pixels, whereas many
data sets used in CNN literature much smaller, such as 20x20
in the MNIST dataset [5], 32x32 in the CIFAR 10 and CIFAR
100 datasets [6], and 32x32 in the TinyImage dataset [7].
In other cases, input images are downsampled to something
around 32x32 before being fed into the CNN, however this
presents problems for this data as the species of interest only
take up a fraction of each frame if they are present.

This work presents the use of a striding methods to extract
positive and negative examples from within video frames and
generate fixed 32x32 pixel sized training and testing images,
and then has developed new software using OpenCL to run the
trained CNNs over entire videos and display which regions

1http://csgrid.org/csg/wildlife/data releases.php



Fig. 1. An example of Wildlife@Home’s video viewing interface. Users are shown 30 minute to 2 hour long nesting videos, and can specify the start and
end time for various events of interest, and provide tags and comments for additional detail. Users can also specify how difficult it was to determine events
for the video and discuss segments of the video on the project’s message boards.

within the video contain the species of interest. Finally, as
generating effective training data is an interactive process due
to varying background imagery, this work also presents some
valuable tricks for other researchers attempting to train CNNs
for similar purposes, such as continuing the training of an
already trained CNN using new example imagery to further
refine its results while saving time from having to completely
retrain a new CNN.

II. RELATED WORK

While there is a large body of work detecting humans and
other objects within video (for surveys see [8], [9]), there is
a growing amount of work in using computer vision to detect
animals and animal events. The majority of this work with
animals has been done in controlled laboratory settings, which
simplifies the task of gathering video and animal detection. A
common approach is to subtract a uniform background from
the animals, which has been used to track white mice on
black backgrounds [10]–[12] or in water [13]–[15]. Tracking
and detecting behavior of fruit flies (Drosophilia) [16]–[18]
has been done in similar settings. Detection of particular
actions or events has also been studied, such as vomiting of
musk shrews [19], [20] using non-rigid body contour matching
and various actions of a grasshopper [21] using spectral
clustering [22].

Research has also been done in uncontrolled lab settings,
without background subtraction or environmental controls.
Sequential Monte Carlo methods, or particle filters [23]–
[26], have been used to to provide tracking with resiliency

to unpredictable motion and non-linear measurement models,
and have been mostly used with insects such as ants [27]
and bees [28], [29]. Tracking outlines of animals in their
stalls using active contours has been used for larger animals
like cows [30] and pigs [31]. Using multiple features (image
abstractions such as anatomical and cage characteristics) to
track rats in reflective and potentially scratched cages [32]
and determine mice behaviors [33], [34] has been successfully
used as well. Also of note, Jhaung et al. developed a manually
annotated video database for training and testing a computer
vision system for detecting behavior in mice in cages [35]–
[37]. Weinstein has developed MotionMeerkat [38] to alleviate
video stream data anlysis by extracting frames with motion
from videos, using Mixture of Gaussians [39] or Running
Gaussian Average [40], [41] for foreground segmentation
and then blob detection and thresholding to determine if a
foreground object is present.

Considerably less research has been done using video taken
in uncontrolled natural settings. Particle filters have been used
to track multiple birds in the sky [42]; and data association
methods have tracked and counted extremely large numbers
of bats in noisy infrared video, taken as the bats leave their
caves at night [43]. Face detection has also been used to
classify species of African great apes using footage taken
from video traps [44]. In settings most similar to this work,
BearCam has been used to detect bears in the arctic circle
during four hour daytime periods [45] by taking low level
features such as image gradients and background differences



and combining them into a mid-level motion shapelet [46]
using AdaBoost [47].

III. METHODOLOGY

The goal of this work was to create and train a CNN
that could be used for the recognition of least tern in video
and images. However, the video and images collected for
Wildlife@Home are not of a consistent size due to different
camera technology used by different researchers to gather the
data. Further, most literature on convolutional neural networks
involves training and testing data sets of small resolution,
in the general range of 32x32 pixels. The least tern videos
analyzed in this work are 704 x 480 pixels, of which the least
tern only take up a small, but larger than 32x32 pixel portion.
There may also be multiple least tern within a video.

In many ways, this illustrates a disconnect between the test
data sets which see widespread use by the computer vision
community, and how CNNs can actually be applied by wildlife
researchers in the field. The following sections describe the
process to bridge this gap, namely how training and testing
images were extracted from the video in Section III-A, the
architecture of the CNN used and how it was trained in
Section III-B, and the software that was developed to run
trained CNNs over videos and determine the presence or
absence of least tern in Sections III-C and III-D.

A. Creating the Training Data

The training data that was available were videos from the
first Wildlife@Home data release [3]. The videos used to
generate training and testing data for this study had ids 58277,
58287 and 58307. These were videos of varying length that
had been watched by volunteers who marked during what
times there was an animal in the video and what the animal
behavior was at that time (on nest, flying, walking, etc.). From
these videos, regions were extracted from various frames that
were of both positive and negative examples. The extracted
regions were of varying sizes, as the wildlife could be of
different sizes depending on how far they were from the
camera. For positive examples, these extracted regions were
then carefully cropped to minimize the existence of any 32 x
32 sub-images within a positive image that did not contain any
pixels of the positive class (see Figure 2). For creating training
data for the CNN, 32 x 32 sub-images were made by striding
across each of the carefully cropped, variable sized training
images. The striding process worked as follows. A 32 pixel
x 32 pixel region starting in the upper lefthand corner was
extracted. After extraction, the start point was moved right by
some stride. Then another 32 x 32 region was extracted with
the new start point. This was repeated until no more 32 x
32 regions could be extracted from the row. The start point
was then moved back to the lefthand side and moved down
by the same stride that was used to move horizontally and
the previous steps were repeated to extract all images from
the row. This was repeated until no more subimages could be
extracted from the image. The striding process was automated
with the stride used as a hyperparameter. Not all images were

TABLE I
CNN ARCHITECTURE

Layer Type Layer Dims Filter/ Stride Number Padding
Pool Size Filters

Input 32 x 32 x 3
Convolutional 28 x 28 x 6 5 1 6 0
Max Pooling 14 x 14 x 6 2 2
Convolutional 14 x 14 x 7 3 1 7 1
Convolutional 12 x 12 x 10 3 1 10 0
Max Pooling 4 x 4 x 10 3 3
Convolutional 4 x 4 x 5 3 1 5 1
Fully Connected 1 x 1 x 2

processed with the same stride. The amount of sub-images
made from each image, which is dependent on the stride used,
was determined in such a way to make the size of the classes
approximately equal. Some of the images were overlapping,
so some duplicate sub-images exist within the training data. In
general, this meant reducing the number of negative examples
and searching for additional positive examples as there is far
more footage of background than the species of interest.

After the network was trained, new images were strided
across and a prediction image was created using the output of
the CNN (for examples see Figure 5).

B. Creating and Training the CNN

A convolutional neural network was created to learn from
the training data. The architecture for the CNN is shown in
Figure 3, and Table I provides specifics of how the layers were
connected. The input is 32x32x3, 32x32 pixels by RGB. The
first layer is a convolutional layer with filters of size 5x5x3
(3 because it is the previous depth), a stride of 1, 6 filters,
and no zero padding. The resulting size after the convolution
is 28x28x6 (6 because it is the number of filters). The rest
of the layers follow the same pattern of the layer dimensions
being the resulting size after the operation has completed.

A few considerations went into the design of the architecture
for the CNN. Because CNNs are relatively slow and there
are many hours of video in the Wildlife@Home data release,
fewer filters were used in the convolutional layers to decrease
run time. The downside to this is that there are less filters
that could be learned. Because of the small number of output
classes, it was thought that even with not many filters, the
CNN could still learn effectively and have good accuracy. The
final output is of size two because this network considers two
options, the first being the image is not of an interior least
tern, the second being that it is.

The network was implemented and trained using a cus-
tom CNN implementation that was developed in C++ and
OpenCL [48]. Using OpenCL allows for the network to train
and run on most CPUs and GPUs, allowing for decreased
training and run time. While there are a number of popular
packages for training CNNs, notably Caffe [49] and MatCon-
vNet [50], the endgoal of this research is to run the trained
CNNs on the over 100,000 hours of Wildlife@Home videos on
volunteered computers using BOINC [51], which precludes the
use of Python (Caffe) or Matlab (MatConvNet) and requires



(a) Original Image (b) First Cropped Area (c) Second Cropped Area

Fig. 2. Example of cleaning training data. The cropping prevents the top right portion of the original image from becoming false positive training examples
when the images are broken down into 32x32 subimages.

Fig. 3. Visualization of the CNN Architecture used in this work.

code to be modified with C/C++ BOINC library calls to run
within BOINC clients.

The activation function used for the Convolutional Layers
was Leaky RELU, a variant of the commonly used RELU
function [52]. The implementation is a feed-forward convo-
lutional neural network that trains using stochastic gradient
descent backpropagation. It utilizes L2 regularization [53]
and Nesterov Momentum [54] to decrease training time and
help prevent the network converging at a non-optimal point.
Weights for the convolutional layers were initialized based on
a normal distribution with mean of 0 and standard deviation
of

√
2/n where n is the number of inputs to the neuron2.

For the final class outputs, a 2-way softmax classifier is used.
The learning rate started at 10−3 and was cut in half every
5 epochs. The network initially trained for five epochs on the
whole set of the training data.

C. Running over Full Images and Videos

After the CNN was trained on the full set of training data,
it was run on videos by striding over 32x32 sub images
within each frame. The Softmax classifier at the end of the
network outputs a number between 0 and 1 for each possible
class. This number roughly describes the confidence that the
network has that the particular image is of the given class. To
determine which parts of a full sized image contain Interior
Least Tern and which do not, each pixel in the image has a
list with elements describing the confidence that the pixel is
of each class, very similar to the Softmax classifier. This will

2In this initialization a weight is not considered to be an input, but a bias
is. Therefore the equation for n would be f2 + 1 with f being the size of
the filter (for a 3x3 filter, f would be 3).

be referred to as the pixel classifier. For each sub-image that
the CNN is run on, every pixel of that sub-image has added to
their pixel classifier the elements of the Softmax classifier for
the sub-image after it is run through the network. Note that
because sub-images may overlap, the elements of the pixel
classifier may be larger than 1.

The CNN is strided across the whole image and each
Softmax classifier is summed into the pixel classifiers. Once
the whole image has been run through the CNN, the values of
the pixel classifiers are used to determine the class the pixel
belongs to. Red was chosen to represent pixels determined
to be Interior Least Tern and blue was chosen to represent
everything else. The more red the pixel, the more confident the
CNN was that the pixel was of Interior Least Tern. The ratio
of the squares of the pixel classifiers were used to determine
the color according to these equations:

r = 255c2p/

n∑
i=0

c2i (1)

b = 255c2p/

n∑
i=0

c2i (2)

where r is the red pixel value, b is the blue pixel value,
cp and cn are the classifier values for pixel for the positive
and negative classifications. This assumes there are only two
classifications, positive and negative. The green pixel value
was always set to zero. For running over the videos, each frame
was run through the CNN in the same way as described above
for full images. The results from running over each frame were
then used to make a new video. Also made from each video
was a CSV file tracking the total red pixel value in each frame.
To try to minimize counting of pixels that were primarily blue
into this total, if a pixel’s red pixel count was less than 150
of 255, it was not added to the total. This file was then used
to create a line graph plotting the red pixel value against time
(e.g., Figures 6, 7).

D. Improving Analysis Performance

After a working version of the video analysis software
was created, another version was created that can utilize
all available OpenCL devices on the machine that allow for



Fig. 4. Overview of the work stealing approach to utilize mutiple OpenCL
devices to quickly run a trained CNN over a video.

double precision floating point values (a requirement for the
CNN). The software utilizes a work stealing strategy (see
Figure 4), where each device is managed by a separate thread
and has its own version of the CNN with the same weights.
Each thread goes through a number of steps. First, the threads
request a frame from a thread safe function that manages the
input video. Second, it runs the CNN over that frame on its
corresponding device. And last, it submits the new prediction
and its corresponding frame number to a thread safe function
that manages all completed frames. This submission function
takes the prediction frame, and if it is the next frame to be
put in the output video according to the frame number, it is
sent to the output video. If not, it is put in a list sorted by
frame number until it is up to be placed in the video. These
steps are done by all threads in a loop until all frames have
been run through the CNNs. This method of storing out of
order frames allows faster devices to run through a greater
proportion of frames without waiting for slower devices. This
method is akin to using separate CNNs with the same weights
on each OpenCL device and each CNN runs independently of
the others. Thus adding more OpenCL devices will decrease
runtime provided there are sufficient frames in the video and
there is not a device slow enough that all other devices can
finish all other frames in the time it takes the slow device to
finish one frame. The implementation does not yet use MPI
or OpenMP and therefore only works on single machines and
not clusters.

IV. RESULTS

The network was trained originally for five epochs over
a testing data set consisting of 72,951 sub-images (39.05%
negative, 69.95% positive) taken from video 58277, which
resulted in an accuracy of 95.6% on the training data. This
network was then run on a larger set of test data of over
280,000 32 x 32 images taken from videos 58287 and 58307.
This test set consisted of mostly novel images, however it

was not possible to perfectly guarantee no duplicates from the
training data due to the similarity of the image backgrounds
throughout the videos. This network achieved an accuracy of
82% on the test set with 77% of its errors results from false
positives.

A. Video and Image Analysis

The initially trained network was tested on subsections of
multiple videos with varying results. When run on one of
the videos that a large amount of training data came from,
it performed fairly well, although it did have a tendency to
misclassify trees and ground stubble as tern (see Figure 5b).
In light of this, more training data involving trees and ground
stubble was acquired. To account for these new negative
examples, the already trained weights were trained for an
additional 2 epochs on a training set that was comprised
of approximately 17,000 images with 69% of them being
negative training data and the rest positive training data. In
the videos and images that Wildlife@Home has, there is far
more negative area than positive area in the frame. This is one
reason that the percentage of negative training data was greater
than positive in this new training set, and in general will be
a problem for ecologists performing automated detection of
wildlife.

After training for 2 epochs on the new training data, the
results had less false positives, but still contained a fair amount
of them (see Figure 5c). The CNN was then trained for
another 2 epochs on the data and performed significantly better
afterwards (see Figure 5d). As a note, the CNN that has the
extra 2 epochs of training achieved and accuracy of 80% on the
test data with 62% of its errors resulting from false positives
and the CNN that trained for the 4 extra epochs got 78% with
only 37% of its errors resulting from false positives. Although
the networks with less extra training performed better on the
test data, the networks with extra training performed better on
the videos. It is believed this is because proportion of false
positives on the earlier networks was higher than in the later
networks.

To approximate how well the CNN performed over entire
videos, the output file containing the total amount of red pixels
in each frame of video was analyzed. This file was shown to
have some interesting properties that correspond well to events
in the video, as shown in Figure 6. This chart was on the 2
minutes 15 seconds of video that the images from Figure 5
came from. From times 0–28 seconds and 112–135 seconds,
the tern is sitting on its nest, which corresponds to the raised
red pixel count. At about 28 seconds, the bird flies off of its
nest and off of the screen. This corresponds to the peak in
the red pixel count. There is a peak because the body of the
bird in flight is larger than the when it’s on the nest (compare
Figure 5 with Figure 8). The bird flies through the picture but
does not land at around 72 seconds and flies in to land at
its nest at about 110 seconds. Between times of about 30-70
seconds and 73-109 seconds, the bird is off of the screen. The
amount of red pixels that are seen in those times comes from
both noise from small amounts of misclassified areas. Using a



(a) Original Image (b) After Initial Training

(c) After 2 Extra Epochs (d) After 4 Extra Epochs

Fig. 5. Predictions after different amounts of training. The stride across image was 3 pixels in both directions.

TABLE II
PERFORMANCE RESULTS ON TWO MACHINES

Computer Devices Time (h:mm:ss) Seconds/Frame
Mac Pro 1 GPU 48:07 5.12
Mac Pro CPU 32:01 3.41
Mac Pro 2 GPUs 27:34 2.93
Mac Pro CPU and 1 GPU 20:45 2.21
Mac Pro CPU and 2 GPUs 17:27 1.86
MacBook Pro GPU 1:17:02 8.20
MacBook Pro CPU 35:06 3.73
MacBook Pro CPU and GPU 26:03 2.77

These results are from running on 56 seconds of video (564 frames) with a stride
of 15 in both directions.

method similar to momentum for training CNN weights could
be used to smooth out some of the jagged-ness of the chart.

B. Performance

One of the downsides of CNNs is that they are typically
quite slow. This was also the case for running the CNNs across
the videos. One of the machines used for testing was a 2013
MacBook Pro with a 2.4 GHz Intel i7, 8 GB of RAM, and a
NVIDIA GeForce GT 650M graphics card with 1GB VRAM.
On this machine, it took the non-parallel version 1 hour, 27
minutes, and 53 seconds to run on 2 minutes and 15 seconds
of 704 x 480 video. The video was shot at 10 FPS for a

total of 1,353 frames. The stride size across the video was
15 pixels in both the horizontal and vertical directions. Note
that this run was using OpenCL code on the CPU only3. The
parallel version was run on the same video and machine and
took 1 hour, 5 minutes, and 3 seconds to run, which is almost
a 26% speedup. This code ran on both the CPU and GPU in
the machine.

Another machine used for testing was a 2013 Mac Pro with
a 3.5 GHz 6-Core Intel Xeon E5 and two AMD FirePro D700s
with 6144MB of VRAM each. A short test video was run
on this machine. The video was 6 seconds long (60 frames).
The stride was 15 in both directions. Using only the CPU, it
ran it in 3 minutes, 20 seconds, which is 3.33 seconds per
frame. Using only one of the GPUs it ran it in 4 minutes, 31
seconds, which is 4.52 seconds per frame. Using the parallel
code running the CPU and both GPUs it ran in 1 minute, 37
seconds, which is 1.62 seconds per frame. The parallel code
had an performance increase of 64% over one GPU alone and
an increase of 51.5% over the CPU alone. The amount of

3Because of the relatively shallow depth of the network and the small
number of filters used, the code ran faster on the CPU than the GPU. This
is presumably because of the larger ratio of memory transfers to computation
for small networks. Networks with a larger amount of filters tested using the
same CNN code did run faster on the GPU than the CPU.



Fig. 6. Presence of red pixels from the pixel classifier, which represent a measure of how much of each frame was an interior least tern. This was run on a
portion of Video 58277.

Fig. 7. A chart from a run on a portion of Video 58277 where multiple tern were in video at the same time.

speedup one can expect to get from using the parallel code is
dependent on the amount of OpenCL devices in the machine.
For additional performance results using differing amounts of
OpenCL devices, see Table II.

V. CONCLUSION

To the authors’ knowledge, this work presents the first use
of convolutional neural networks to detect wildlife within
uncontrolled outdoor video. These preliminary results show
a strong ability for a well trained CNN to detect interior
least terns within video collected by Wildlife@Home. To
accomplish this, this work introduced strategies to bridge the
gap between video collected by wildlife biologists and the

current methodology for training and testing CNNs, by uti-
lizing a striding methodology to extract positive and negative
training examples of a fixed size. In order to efficiently run
trained CNNs over full videos, software was developed using
OpenCL which was capable of utilizing multiple GPUs and
other OpenCL capable compute devices concurrently. It was
also shown that an already trained CNN can be further refined
by training it further on new imagery, without having to retrain
the whole network from scratch, which can save significant
time. Further, while the CNNs trained were only for detection
of interior least terns, they show promise for actually detecting
behavior, as obvious peaks resulted for periods of video when
a tern was in flight.



(a) Original Image (b) After 4 Extra Epochs

Fig. 8. Predictions on a frame containing a flying interior least tern.

This work lays the groundwork for significant future study,
in particular to investigate how generalizable these trained
CNNs are over the entire dataset of Wildlife@Home videos.
Additional CNNs will need to be trained for the other species
involved in the project. With these CNNs trained, it will be
possible to utilize the over 3,000 volunteered computers at
Wildlfe@Home to analyze the entire data set of videos and
compare these to volunteer and expert observations. This will
provide a chance to further refine and investigate different
CNN architectures to determine which are the most capable
of determining wildlife behavior in this challenging data set.

ACKNOWLEDGMENTS

We appreciate the support and dedication of the
Wildlife@Home citizen scientists who have spent significant
amounts of time watching video. This work has been partially
supported by the National Science Foundation under Grant
Number 1319700. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation. Funds to collect data in the field were
provided by the U.S. Geological Survey.

REFERENCES

[1] W. A. Cox, M. S. Pruett, T. J. Benson, J. C. Scott, and F. R. Thomp-
son, “Development of camera technology for monitoring nests,” Video
surveillance of nesting birds. Studies in Avian Biology, vol. 43, pp. 185–
210, 2012.

[2] S. N. Ellis-Felege and J. P. Carroll, “Gamebirds and nest cameras:
present and future,” Video surveillance of nesting birds. Studies in Avian
Biology, vol. 43, pp. 35–44, 2012.

[3] K. Goehner, T. Desell, R. Eckroad, L. Mohsenian, P. Burr, N. Caswell,
A. Andes, and Susan-Ellis-Felege, “A comparison of background sub-
traction algorithms for detecting avian nesting events in uncontrolled
outdoor video,” in In the 11th IEEE International Conference on
eScience, Munich, Germany, August 2015.

[4] T. Desell, R. Bergman, K. Goehner, R. Marsh, R. VanderClute, and
S. Ellis-Felege, “Wildlife@ home: Combining crowd sourcing and
volunteer computing to analyze avian nesting video,” in eScience
(eScience), 2013 IEEE 9th International Conference on. IEEE, 2013,
pp. 107–115.

[5] Y. LeCun and C. Cortes, “Mnist handwritten digit database,” AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[6] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Computer Science Department, University of Toronto,
Tech. Rep, 2009.

[7] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 30,
no. 11, pp. 1958–1970, 2008.

[8] D. Weinland, R. Ronfard, and E. Boyer, “A survey of
vision-based methods for action representation, segmentation and
recognition,” Computer Vision and Image Understanding, vol.
115, no. 2, pp. 224 – 241, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1077314210002171

[9] T. B. Moeslund, A. Hilton, and V. Kruger, “A survey
of advances in vision-based human motion capture and
analysis,” Computer Vision and Image Understanding, vol.
104, no. 23, pp. 90 – 126, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1077314206001263

[10] H. Ishii, M. Ogura, S. Kurisu, A. Komura, A. Takanishi, N. Iida,
and H. Kimura, “Development of autonomous experimental setup for
behavior analysis of rats,” in Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on, 29 2007-nov. 2 2007, pp.
4152 –4157.

[11] W. Goncalves, J. Monteiro, J. de Andrade Silva, B. Machado, H. Pistori,
and V. Odakura, “Multiple mice tracking using a combination of particle
filter and k-means,” in Computer Graphics and Image Processing, 2007.
SIBGRAPI 2007. XX Brazilian Symposium on, oct. 2007, pp. 173 –178.

[12] H. Pistori, V. V. V. A. Odakura, J. B. O. Monteiro, W. N.
Goncalves, A. R. Roel, J. de Andrade Silva, and B. B.
Machado, “Mice and larvae tracking using a particle filter with
an auto-adjustable observation model,” Pattern Recognition Letters,
vol. 31, no. 4, pp. 337 – 346, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865509001330

[13] Y. Nie, I. Ishii, K. Yamamoto, K. Orito, and H. Matsuda, “Real-time
scratching behavior quantification system for laboratory mice using
high-speed vision,” Journal of Real-Time Image Processing, vol. 4,
pp. 181–190, 2009, 10.1007/s11554-009-0111-7. [Online]. Available:
http://dx.doi.org/10.1007/s11554-009-0111-7

[14] Y. Nie, I. Ishii, K. Yamamoto, T. Takaki, K. Orito, and H. Matsuda,
“High-speed video analysis of laboratory rats behaviors in forced swim
test,” in Automation Science and Engineering, 2008. CASE 2008. IEEE
International Conference on, aug. 2008, pp. 206 –211.

[15] T. Mukhina, S. Bachurin, N. Lermontova, and N. Zefirov,
“Versatile computerized system for tracking and analysis of
water maze tests,” Behavior Research Methods, vol. 33,
pp. 371–380, 2001, 10.3758/BF03195391. [Online]. Available:
http://dx.doi.org/10.3758/BF03195391

[16] S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson,
“Trackfly: Virtual reality for a behavioral system analysis



in free-flying fruit flies,” Journal of Neuroscience Methods,
vol. 171, no. 1, pp. 110 – 117, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165027008001210

[17] H. Dankert, L. Wang, E. D. Hoopfer, D. J. Anderson, and P. Perona,
“Automated monitoring and analysis of social behavior in drosophila,”
Nature Methods, 2009.

[18] K. Branson, A. Robie, J. Bender, P. Perona, and M. Dickinson, “High-
throughput ethomics in large groups of drosophilia,” Nature Methods,
2009.

[19] D. Huang, K. Meyers, S. Henry, F. De la Torre, and C. Horn, “Non-rigid
tracking of musk shrews in video for detection of emetic episodes,” in
Computer Vision and Pattern Recognition Workshops (CVPRW), 2011
IEEE Computer Society Conference on, june 2011, pp. 17 –23.

[20] D. Huang, K. Meyers, S. Henry, F. D. la Torre, and C. C. Horn,
“Computerized detection and analysis of cancer chemotherapy-induced
emesis in a small animal model, musk shrew,” Journal of Neuroscience
Methods, vol. 197, no. 2, pp. 249 – 258, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165027011001270

[21] M. M. Naeini, G. Dutton, K. Rothley, and G. Mori, “Action recognition
of insects using spectral clustering,” in In IAPR Conference on Machine
Vision Applications, 2007.

[22] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp.
888–905, 2000.

[23] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle filter for
nonlinear problems,” Radar, Sonar and Navigation, IEE Proceedings -,
vol. 146, no. 1, pp. 2 –7, feb 1999.

[24] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization
for mobile robots,” in Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on, vol. 2, 1999, pp. 1322 –1328
vol.2.

[25] N. Gordon, D. Salmond, and A. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” Radar and Signal
Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107 –113, apr 1993.

[26] M. Isard and A. Blake, “Contour tracking by stochastic propagation of
conditional density,” in Proceedings of the 4th European Conference
on Computer Vision-Volume I - Volume I, ser. ECCV ’96. London,
UK, UK: Springer-Verlag, 1996, pp. 343–356. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645309.648900

[27] Z. Khan, T. Balch, and F. Dellaert, “Mcmc-based particle filtering for
tracking a variable number of interacting targets,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 27, no. 11, pp. 1805
–1819, nov. 2005.

[28] A. Veeraraghavan, R. Chellappa, and M. Srinivasan, “Shape-and-
behavior encoded tracking of bee dances,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 30, no. 3, pp. 463 –476, march
2008.

[29] Z. Khan, T. Balch, and F. Dellaert, “A rao-blackwellized particle
filter for eigentracking,” in Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, vol. 2, june-2 july 2004, pp. II–980 – II–986 Vol.2.

[30] A. Cangar, T. Leroy, M. Guarino, E. Vranken, R. Fallon, J. Lenehan,
J. Mee, and D. Berckmans, “Automatic real-time monitoring of
locomotion and posture behaviour of pregnant cows prior to
calving using online image analysis,” Computers and Electronics in
Agriculture, vol. 64, no. 1, pp. 53 – 60, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168169908001373

[31] R. Tillett, C. Onyango, and J. Marchant, “Using model-based image
processing to track animal movements,” Computers and Electronics in
Agriculture, vol. 17, no. 2, pp. 249 – 261, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168169996013087

[32] R. Farah, J. Langlois, and G. Bilodeau, “Rat: Robust animal tracking,”
in Robotic and Sensors Environments (ROSE), 2011 IEEE International
Symposium on, sept. 2011, pp. 65 –70.

[33] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recog-
nition via sparse spatio-temporal features,” in Visual Surveillance and
Performance Evaluation of Tracking and Surveillance, 2005. 2nd Joint
IEEE International Workshop on, oct. 2005, pp. 65 – 72.

[34] S. Belongie, K. Branson, P. Dollár, and V. Rabaud, “Monitoring animal
behavior in the smart vivarium,” in Measuring Behavior, Wageningen,
NL, 2005, pp. 70–72.

[35] H. Jhuang, E. Garrote, N. Edelman, T. Poggio, A. Steele, and
T. Serre, “Trainable, vision-based automated home cage behavioral
phenotyping,” in Proceedings of the 7th International Conference on
Methods and Techniques in Behavioral Research, ser. MB ’10. New
York, NY, USA: ACM, 2010, pp. 33:1–33:4. [Online]. Available:
http://doi.acm.org/10.1145/1931344.1931377

[36] ——, “Vision-based automated recognition of mice home-cage behav-
iors.” in Workshop: Visual Observation and Analysis of Animal and
Insect Behavior, in conjunction with International Conference on Pattern
Recognition (ICPR), 2010.

[37] H. Jhuang, E. Garrote, X. Yu, V. Khilnani, T. Poggio, A. D. Steele, and
T. Serre, “Automated home-cage behavioural phenotyping of mice.”
Nature communications, vol. 1, no. 6, p. 68, 2010. [Online]. Available:
http://www.nature.com/doifinder/10.1038/ncomms1064

[38] B. G. Weinstein, “Motionmeerkat: integrating motion video detection
and ecological monitoring,” Methods in Ecology and Evolution, 2014.

[39] P. W. Power and J. A. Schoonees, “Understanding background mixture
models for foreground segmentation,” in Proceedings image and vision
computing New Zealand, vol. 2002, 2002, pp. 10–11.

[40] A. M. McIvor, “Background subtraction techniques,” Proc. of Image and
Vision Computing, vol. 4, pp. 3099–3104, 2000.

[41] M. Piccardi, “Background subtraction techniques: a review,” in Systems,
man and cybernetics, 2004 IEEE international conference on, vol. 4.
IEEE, 2004, pp. 3099–3104.

[42] D. Tweed and A. Calway, “Tracking many objects using
subordinated condensation,” in Proceedings of the British
Machine Vision Conference, P. Rosin and D. Marshall, Eds.
BMVA Press, October 2002, pp. 283–292. [Online]. Available:
http://www.cs.bris.ac.uk/Publications/Papers/1000674.pdf

[43] M. Betke, D. Hirsh, A. Bagchi, N. Hristov, N. Makris, and T. Kunz,
“Tracking large variable numbers of objects in clutter,” in Computer
Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on,
june 2007, pp. 1 –8.

[44] A. Ernst and C. Kublbeck, “Fast face detection and species classification
of african great apes,” in Advanced Video and Signal-Based Surveillance
(AVSS), 2011 8th IEEE International Conference on, 30 2011-sept. 2
2011, pp. 279 –284.

[45] J. Wawerla, S. Marshall, G. Mori, K. Rothley, and P. Sabzmeydani,
“Bearcam: automated wildlife monitoring at the arctic circle,” Mach.
Vision Appl., vol. 20, no. 5, pp. 303–317, Jun. 2009. [Online].
Available: http://dx.doi.org/10.1007/s00138-008-0128-0

[46] P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning shapelet
features,” in Computer Vision and Pattern Recognition, 2007. CVPR ’07.
IEEE Conference on, june 2007, pp. 1 –8.

[47] P. Viola and M. Jones, “Robust real-time object detection,” in Interna-
tional Journal of Computer Vision, 2001.

[48] J. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, p. 66, 2010.

[49] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM International
Conference on Multimedia. ACM, 2014, pp. 675–678.

[50] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for matlab,” in Proceedings of the 23rd Annual ACM Conference on
Multimedia Conference. ACM, 2015, pp. 689–692.

[51] D. P. Anderson, E. Korpela, and R. Walton, “High-performance task
distribution for volunteer computing.” in e-Science. IEEE Computer
Society, 2005, pp. 196–203.

[52] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, vol. 30, 2013,
p. 1.

[53] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[54] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27,

no. 2, 1983, pp. 372–376.


