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Abstract—Automated object detection within imagery is chal-
lenging in the field of wildlife biology. Uncontrolled conditions,
along with the relative size of target species to the more abundant
background makes manual detection tedious and error-prone.
In order to address these concerns, the Wildlife@Home project
has been developed with a web portal to allow citizen scientists
to inspect and catalog these images, which in turn provides
training data for computer vision algorithms to automate the
detection process. This work focuses on a project with over 65,000
UAS images from flights in the Hudson Bay area of Canada
gathered in the years 2015 and 2016. This data set comprises
over 3TB or raw imagery and also contains a further 2 million
images from related ecological projects. Given the data scale,
the person-hours that would be needed to manually inspect the
data is extremely high. This work examines the efficacy of using
citizen science data as inputs to convolutional neural networks
(CNNs) used for object detection. Three CNNs were trained with
expert observations, citizen scientist observations, and matched
observations made by pairing citizen scientist observations of the
same object and taking the intersection of the two observations.
The expert, matched, and unmatched CNNs overestimated the
number of lesser snow geese in the testing images by 88%,
150%, and 250%, respectively, which is less than current work
using similar techniques on all visible (RGB) UAS imagery.
These results show that the accuracy of the input data is more
important than the quantity of the input data, as the unmatched
citizen scientists observations are shown to be highly variable,
but substantial in number, while the matched observations are
much closer to the expert observations, though less in number.
To increase the accuracy of the CNNs, it is proposed to use a
feedback loop to ensure the CNN gets continually trained using
extracted observations that it did poorly on during the testing
phase.

I. INTRODUCTION

The Wildlife@Home project is a citizen science web portal
that allows non-field scientists to aid in the cataloging of
data from ecological video and images. There is currently
over 100,000 hours of video captured by nest cameras and
over 65,000 aerial images captured with the usage of an
unmanned aerial system (UAS) from multiple sub-projects, the
majority of which still need cataloging. For field-scientists,
called experts throughout this paper, to manually categorize
every minute of video and every pixel of imagery is infeasible,
especially within a timely manner. Utilizing citizen scientists
to crowd source this categorization dramatically increases the
throughput of cataloging.

The primary concern with citizen scientists is proving their
ability to produce good, consistent observations that closely
match observations an expert would produce. In prior work,
it was shown that individual citizen scientists produce highly
variable bounding boxes around objects from the UAS im-
agery [1]. This variability can be reduced by matching two
or more citizen sciences observations to the same object and
extracting the intersection of the observations to produce a
singular matched observation that is less variable and more
closely matches expert observations on the same object.

This paper expands upon prior work by demonstrating the
viability of using citizen science observations when compared
against expert observations for providing training data to auto-
mated machine learning using convolutional neural networks
(CNNs). Proving the efficacy of citizen science observations
being used for CNN inputs increases confidence that citizen
science can be used to facilitate field-scientists to process
data and reach conclusions quicker. In the relatively small
geographical area of the dataset used in this paper, there are
over 65,000 individual UAS images totaling over 3 TB of raw
data, with near that number expected to be produced each
year for the next several years. Citizen scientists are therefore
instrumental in the initial data processing, especially given the
expected increase in the data gathering rate.

CNNs are commonly used for image classification, making
them well suited for use in this work. CNNs transform an
input image through a number of hidden layers (convolutional,
max-pooling, and fully connected layers are the most common
types) and finally predict to which class the input image
belongs. The convolutional and fully connected layers contain
weights that are trained to allow the network to accurately
identify the images. Typically training is done using gradient
descent, with additional techniques having been developed to
aid training.

This paper is divided into several sections. Section II
discusses similar projects in the field, especially ecological
citizen science projects. Section III provides the full details
on the collected images in the dataset. Section IV describes
the methodology used in gathering and processing the citizen
science observations, preprocessing and formatting the data
for usage in the CNNs, and the structure and physical systems
used for the running and analysis of the CNNs. Section V
presents the results of the CNNs and provides analysis and



context for the results. Section VI reaches conclusions about
the results. Finally, Section VII touches on potential future
works of the project to increase the correctness of the CNNs.

II. RELATED WORK

Crowd sourcing has become more and more popular in
recent years, with many projects successfully using citi-
zen scientists to produce results. In the astronomical fields,
GalaxyZoo [2], [3] allows citizen scientists to classify galax-
ies in images from the Sloan Digital Sky Survey [4] and
PlanetHunters [5] allows citizen scientists to identify planet
candidates from the NASA Kepler public release data. Citizen
scientists have also been successfully leveraged in ecological
projects. Snapshot Serengeti [6] allows citizen scientists to
identify objects from camera traps in the Serengeti National
Park.

Zooniverse [7] is a platform that allows for rapid devel-
opment of citizen science projects, including GalaxyZoo and
Snapshot Serengeti. At the start of 2014, there were over 20
projects in a wide variety of fields hosted by Zooniverse [7],
the best performing of which tend to be well-established
projects relating to astronomy with good community out-
reach [8]. Having a robust platform that allows for scientists
to get the data in the hands of citizen scientists quickly and
easily is paramount for the usefulness of the platform. The
major differentiator between this work and Zooniverse is the
granularity of input. Zooniverse allows citizen scientists to say
what and how many of the objects are in the images, while this
work also allows the where to be defined. To give accurate,
automated inputs to a CNN, the where is extremely important.

There are a few projects using citizen science within avian
ecology specifically. NestCams [9] is a Cornell project that
has video cameras installed primarily in bird houses, op-
portunistically capturing a variety of cavity-nesting species.
CamClickr [10] was used to catalog nesting behavior in over
600,000 images. CamClickr was even used during a university
biology curriculum to teach students how to accurately identify
objects in images while being aware of potential observer
biases [11]. eBird [12] allows users to upload user-taken im-
ages of bird observations through handheld devices, providing
spatio-temporal information about the bird distribution and
abundance.

Automated object detection from ecological imagery has
started seeing more use in recent years. A recent project used
mosaic UAS imagery of white-tailed deer with both visible
(RGB) and thermal infrared (TIR) spectra [13]. Supervised
and un-supervised pixel-based detection, which is a more
simplistic detection method, were both unsuccessful on both
RGB and TIR imagery; however, object-based image analysis
(OBIA) proved to be extremely successful on the TIR imagery,
producing no false-positives while matching the 50% detection
rate of manned aerial surveys [13]. OBIA on the RGB images,
however, had an extreme number of false positives, with 1,946
deer detected in an image with only 4 actual deer present, as an
example [13]. This shows that TIR can potentially dramatically

increase the accuracy of automated ecological object detection
in UAS imagery and highlights the difficulty of RGB analysis.

Another project used video recorded during UAS flights and
used feature-based analysis using two features — color and
shape — to detect birds in the video [14]. After manually
selecting the input objects for feature-testing, the system was
able to have omission (missed objects) and commission (false-
positives) rates of less that 20% each [14]. This is an encour-
aging method that can potentially be used in conjunction with
CNNs in future work.

III. WILDLIFE@HOME IMAGE DATASET

A major consideration for using UAS is that of safety.
Manned aerial wildlife surveys are a leading causes of death
for wildlife biologists, accounting for 66% of work related
mortality from 1937-2000 [15]. Using a UAS to perform
the flights and record images and video for observation in
a safe environment has therefore seen an increased usage in
ecological and biological projects [16]–[26]. It was shown that
sampling bias is prevalent in manned aerial wildlife surveys,
even when looking at large mammals over a large area, with
the surveys finding 50% or less of the number of groups of
the target species [27], [28].

A Trimble UX51 fixed wing UAS was flown at Wapsusk
National Park in Manitoba, Canada in summer 2015 and
summer 2016. Flights were conducted during the nesting
season of lesser snow geese and common eiders and approx-
imately a month later during the post-hatch period. Flights
were conducted at 75m, 100m, and 120m above ground level
along pre-defined transects. Images were recorded with a 16
megapixel Sony red, green, blue (RGB) flown in the nadir
position with an 80% overlap between images.

For ease of presentation, the overlapping images were used
to generate mosaics using Trimble Business Center2 (version
3.51) and Pix4D3 (version 3.2.23) for the 2015 and 2016
images, respectively. These mosaic images were then split into
1024x768 sub-images for presentation to the citizen scientists
on Wildlife@Home. Each mosaic comprises several hundred
sub-images.

In total, the combined set of flights produced over 65,000
raw UAS images totaling over 3 TB of raw imagery. These
images combined into 36 distinct mosaics totaling over 50 GB
of mosaic imagery that was sliced into 8,759 sub-images for
presentation on Wildlife@Home.

There was a technical issue during the 2015 flights that
incorrectly filtered the blue channel of the camera, producing
images that are skewed from true RGB images such as the
2016 data. To alleviate this issue for the CNNs, the 2015
data was RGB-shifted to match the 2016 data. This shifting is
further discussed in Sec. IV-A.

1http://uas.trimble.com/ux5
2http://www.trimble.com/Survey/trimble-business-center.aspx
3https://pix4d.com/



IV. METHODOLOGY

The methodology of the project is described in terms of: (i)
the crowd sourcing web portal design, implementation, and
data; (ii) preprocessing the raw data for usage in CNNs; (iii)
how the data was selected and formatted for the CNNs; (iv)
how the CNNs were structured and trained; and (v) how results
were evaluated and quantified.

A. Citizen Science Data Gathering

In prior work, a web portal was created as part of the
Wildlife@Home project to allow citizen scientists to examine
the ecological UAS imagery collected [1]. The citizen scien-
tists are presented images from an observation queue and are
instructed to draw boxes around all objects that they can find
in the image. The citizen scientists are given documentation to
help them identify objects accurately, draw the bounding boxes
around the object in such a way as to minimize negative space,
and submit the information to the database.

The current web portal can be seen in Figure 1. At the
top of the image is a status bar, which is currently showing
how many images are left for review in the current mosaic,
with the message being replaced by success or error messages
upon submission of the observations. On the right side of the
interface is the image being shown to the user who is able to
double-click (or double-tap) to create a new observation which
can be resized and moved around the interface to identify an
object. The image can be zoomed in and panned around, with
the current zoom level being shown in the bottom right and the
current location within the image being shown by the scroll
bars on the bottom and right.

On the left side of the interface is the internal image number
with a balloon button that opens a post on the Wildlife@Home
forum for discussion about the image and help buttons for
species and the interface, which open popups with instructions
on identifying different species or how to use the interface,
respectively. Next are the object identification forms for each
observation drawn in the image. Users are able to change the
species, note whether or not they believe the species is on a
nest, or delete the observation and corresponding box. Finally,
users are able leave general comments about the image and
submit their observations to the database, or submit that there
is nothing here if no observations are made on the image.

There have been 63 unique citizen scientists who have made
6,852 observations. From the citizen scientist observations,
3,894 have been matched with at least one other citizen
scientist to create matched observations using the 10-pixel
corner point method from prior work [1]. There have been
5 unique experts who have made 2,775 observations, 1,200 of
which are from a single expert who completed 12 mosaics.

To encourage citizen scientists to make observations,
gamefication was implemented to give citizen scientists points
for making observations, which unlock different badges on the
Wildlife@Home forum and is used for a public leaderboard
of image reviewers4. Citizen scientists are given 1-point for

4https://csgrid.org/csg/top image reviewers.php

completing an image, whether or not any observations were
made, 2-points for each observation made within the image,
and an additional 5-points for each observation that is matched
with another citizen scientist. This point system was designed
to promote good results over simply submitting nothing to the
database to earn 1-point at a time. In the future, more points
will be given for observations that have been confirmed to be
true, and potentially points may be deducted for observations
that are confirmed to be false.

B. Correcting Blue-Shifted Imagery

There was a technical fault with the RGB camera used
during collection of the 2015 UAS imagery that affected the
blue channel. After reviewing several images between the
2015 and 2016 datasets, a simple multiplier on each channel
was used to normalize the 2015 images to the 2016 images.
Every pixel in the 2015 images had the red-, green-, and
blue channels multiplied by 233.0/150.0, 255.0/189.0, and
236.0/190.0, respectively, and floored to the nearest integer
with a maximum of 255 on each channel. This appeared
visually correct, as seen in Fig. 2, and proved to normalize
the RGB spectrum well enough for use in the CNNs with
both 2015 and 2016 datasets combined.

The alternative would be to leave the 2015 and 2016 datasets
distinct and run CNNs for each dataset independently. Given
the relatively small number of observations and the encourag-
ing results of the normalized dataset, it was determined that the
more numerous combined and normalized dataset with 2015
and 2016 images was better for CNN training than two distinct
datasets.

C. Preprocessing the Data and Data Formats

The citizen scientists identified locations of white and blue
phase lesser snow geese on images ranging in size from
1024x768 pixels to over 2000x3000 pixels. Typical CNNs have
a fixed input size ranging from 28x28 pixels in the MNIST
dataset [29] to a few hundred pixels on each dimension for
the ImageNet dataset [30]. For datasets with some variation in
sizes, such as ImageNet, it is common to randomly crop one
or more images of a fixed size and run the cropped images
through the CNN. Due to the nature of the data in this work,
in which images are large and the foreground being searched
for in the images are small, and the fact that counting the
number of geese in an image is a goal, not just detection,
randomly cropping images from an image that contains geese
and labeling those images as foreground was not deemed
acceptable.

To deal with the disparity in the sizes of data and what the
CNN needs, two formats for the data were used. First, for
both training and testing the CNN, 18x18 pixel sub-images
were extracted from the larger images, a size chosen because
objects in the imagery typically ranged from 14 — 18 pixels in
each dimension. Images presented to users were from varying
heights of 75m, 100m, and 125m. It was decided to group
observations from these heights into a single dataset as the
end observations are within a couple pixels of each other in



Fig. 1. The graphical user interface (GUI) for identifying objects in ecological imagery for the Wildlife@Home projects. This screenshot shows a UAS image
with two white snow geese identified by the user on mosaic 46 with 181 out of 192 images remaining in the mosaic.

(a) Original image from 2015
with blue-shift error

(b) Same image from 2015 after
the normalizing algorithm

Fig. 2. An example of the blue-shift error on a 2015 UAS image with the
resultant image after RGB normalization to closely match the RGB spectrum
of the 2016 UAS imagery. The white snow geese are actually white and the
ground is correctly brown in the normalized image.

each dimension. These sub-images were stored in the IDX file
format and will be referred to as training and testing IDXs.
The other format used was PNG images of varying sizes taken
straight from the mosaics and are referred to as mosaic split
images (MSIs). The MSIs were used for testing purposes only.

For creating the IDX files for training and testing, two
parts of data were considered separately. The two parts are
foreground, which is any part of an image that contains a
white or blue phase snow goose, and background, which is all
other parts of the image. For extracting foreground, all boxes
that were marked as either white phase or blue phase lesser
snow geese were pulled from the images. For the background,

random cropping was used to pull random background from
the larger images. If one of the random crops overlapped at
all with an area marked as a goose by any expert or citizen
scientist, it was not included in the background set.

For testing a CNN over the MSIs, a striding method [31]
was used to break the MSIs into smaller images (sub-images)
that could be run through the CNN. The obvious downside
to striding is that the amount of data that must be go through
the CNN is substantially larger. During testing, however, more
information is gained through this method because not only
is the what predicted (as in what class the CNN labels a sub-
image) but also the where. By reconstructing the MSI using
the predictions on the sub-images, it can easily be seen where
the geese are predicted to be in the image. A reconstruction
of an MSI using the predictions by a CNN is referred to as a
prediction image. Once the prediction of the MSI is created,
blob counting techniques can be used to count the number of
geese found by the CNN.

D. How the Data Was Chosen and Formatted

All imagery that had been labeled by both expert and
citizen scientists were considered for training and testing.
Approximately 20% of the MSIs that did not contain any
geese and 20% of the MSIs that did were set aside for testing
purposes.

From the remaining data, three separate datasets were made.
These were an expert dataset containing only expert obser-
vations, a matched dataset containing only citizen scientist
observations that were able to be matched, and an unmatched
dataset containing all citizen scientist observations regardless



Fig. 3. Visualization of the CNN Architecture used in this work.

TABLE I
CNN ARCHITECTURE

Layer Type Layer Dims Filter / Stride Filters Padding
Pool Size

Input 18 x 18 x 3

Convolutional 18 x 18 x 32 3 1 32 1

Max Pooling 9 x 9 x 32 2 2

Convolutional 9 x 9 x 64 3 1 64 1

Max Pooling 3 x 3 x 64 3 3

Fully Connected 1 x 1 x 128 128

Fully Connected 1 x 1 x 3 3

of whether or not they could be matched. The background
images used in each of these datasets was identical.

Testing IDX files were created from the 20% of the data
set aside for that purpose, and the MSIs themselves were used
for testing. The IDXs created from this data contained only
geese found by the experts, as that is considered the most true
data and is what the citizen data is compared against. All of
the CNNs were run against the same test data so they could
be directly compared.

E. Training the CNNs

The CNN architecture used can be found in Figure 3 and
Table I. It was trained on a Mac Pro using a 3.5 GHz 6-
Core Intel Xeon E5 processor. Running over the MSIs used
the processor and two AMD FirePro D700s concurrently.
Nesterov Momentum with a momentum constant of 0.9 and
L2 regularization with a λ of 0.05 were used to aid training.
The learning rate started at 1x10−3 and was multiplied by
0.75 each epoch. Batch normalization was used after each
convolutional layer and each fully connected layer. Batch
normalization was placed before the activation function and
used a minibatch size of 32, as found in the the original batch
normalization paper [32]. The Leaky RELU activation function
was used [33]. The weights for the convolutional and fully
connected layers were randomly initialized based on a normal
distribution with a mean of 0 and standard deviation of

√
2/n

with n being the number of inputs to the neuron. For batch
normalization, there was one γ and β for each feature map
and all γs were initialized to 1 and βs to 0. A separate CNN
was trained on each dataset for 15 epochs and the epoch that
had the best results on the training data was saved.

To deal with the disparity in the number of images in
each class, undersampling of the background was used. There

were 5 background images shown to the CNN for every 1
white phase snow goose image. This means that not every
background image was shown every epoch. The background
images shown were randomly selected each epoch.

Three CNNs were trained for this work, one on each dataset.
These CNNs only identified white phase snow geese; blue
phase snow geese were considered background.

F. Evaluation of Results
Once the CNNs were trained, the results were quantified in

a few ways. The first way was the running the trained CNNs
over an IDX file that contained novel testing images. The
testing images that contained white phase snow geese were
ones that were identified as such by the experts. This is the
only evaluation method that does not use the prediction images
over the MSIs.

The second of the quantification methods uses the prediction
image to determine if a CNN “found” the observations the
expert found. An observation is considered “found” by the
CNN if 10% of the pixels within the bounding box drawn
by the expert are considered the same species as identified
by the expert. The reason the percentage is so low is that
if a bounding box was unnecessarily large, the CNN could
have marked it as the correct species but failed the “finding”
process. Also, given the small percentage of pixels that are not
background, it is unlikely the CNN “accidentally” marked part
of the area in the box as the correct species. The percentage
of background pixels that are misidentified as a goose is also
recorded.

The final quantification method involves using a blob
counter on the prediction image to count the number of blobs
of each species. If the CNN is accurate, counting the blobs
should give a rough estimate of the number of each species
in the image. It should be noted that if two geese are located
right next to each other in the image, it is likely that only
one distinct blob will be created and counted. This is quite
common as there are often nesting pairs of geese. Remedying
this problem will be looked into for future work. The blob
detector used was OpenCV’s SimpleBlobDetector.

G. Data Statistics
Table II shows the number of observation objects and back-

ground objects, each object being 18x18 pixels as described
in Sec. IV-C, for all the datasets. As the CNNs were trained
to identify white phase only, the blue phase observations
are included in the background observations. This was done
because white phase and blue phase snow geese share the
same physical shape, with only the coloration being different.
By adding the alternate phase observations to the background
objects, the CNN is less likely to misidentify blue phase snow
geese as white phase.

V. RESULTS

A. Training and Testing IDXs
The CNNs were training and tested using the datasets

described in Sec. IV-G. These datasets were stored in the IDX
file format described in Sec. IV-C.



(a) Original Image (b) Prediction by expert CNN (c) Prediction by matched CNN (d) Prediction by unmatched
CNN

Fig. 4. Predictions on an image by three different CNNs. The expert trained CNN had less misclassified errors than the matched or unmatched CNNs.

TABLE II
DATA STATISTICS PER DATASET

Dataset White Phase Blue Phase Background

Expert 1,731 503 78,040
Matched 5,344 405 78,040
Unmatched 6,264 1,043 78,040
Testing 401 129 18,278

As seen in Table III, the unmatched dataset had the lowest
training percentages on the white phase and background for the
training, which could indicate that the objects labeled as white
phase in that dataset might have more variability to them than
in the other datasets. Logically, this would make sense, as this
dataset had observations from non-expert citizen users and no
validation of their correctness was done. The highest overall
accuracy on the training data came from the matched dataset
with an overall training accuracy of 99.58%. The matched
dataset also had the best accuracy on the white phase, while
the expert dataset did best on the background.

Of course, accuracy on training data is not nearly as
important as accuracy on a novel set of test data. As seen
in Table IV, the expert did the best overall, which would
be expected. For the other networks, the unmatched one did
better on identifying the white phase, but slightly worse on
the background than the matched dataset. In this it should be
noted that even though the network that used the matched
data did considerably worse on the white phase and only
marginally better on the background, it still had a better overall
performance due to the much larger number of background
images in the test set.

B. Testing MSIs

The IDX files used in Sec. V-A contain only a small portion
of the total imagery. To prove the viability of each CNN, whole
images are run through the network and a prediction image

TABLE III
IDX DATASET VS CNN TRAINING ACCURACY

Accuracy
CNN White Phase Background Total

Expert 97.69% 99.81% 99.47%
Matched 98.65% 99.76% 99.58%
Unmatched 92.27% 99.14% 98.00%

TABLE IV
IDX DATASET VS CNN TESTING ACCURACY

Accuracy
CNN White Phase Background Total

Expert 96.26% 99.91% 99.81%
Matched 91.52% 99.95% 99.76%
Unmatched 95.26% 99.75% 99.64%

is created with the predicted classifications for every pixel
of the original image. Using a blob counter, as described in
Sec. IV-F, the number of observations made by the CNN can
be compared against the known true number of observations
made by experts on the same images.

1) Comparing Against User Observations: The unmatched
CNN only missed 22 of the 401 white phase snow geese
found by the experts, although it also had largest amount of
misclassified background at 0.09%. The expert CNN did the
best in terms of balancing both finding the white phase geese
and not misclassifying background, only missing 26 geese and
misclassifying 0.04% of the background, over twice as good
as the unmatched. The matched dataset missed the most white
phase at 41, and the amount of background it misclassified
was at 0.05%, in between the expert and unmatched.

It must be noted that while the unmatched CNN missed
the fewest geese, if one predicted that every pixel was white
phase then no geese would be missed. That is why accurately



(a) Original Image (b) Prediction by expert CNN

(c) Prediction by matched CNN (d) Prediction by unmatched CNN

Fig. 5. Predictions on an image with artifacting. All the CNNs had some errors over the artifacted image with the expert CNN having the least errors. Also
the expert CNN correctly identified the rock in the bottom center of the image as background while the matched and unmatched CNNs incorrectly identified
parts of it as white phase.

TABLE V
COMPARISON OF CNN TO EXPERT OBSERVATIONS (WHITE ONLY)

CNN Matched Missed Total Match Percent BG Misclassified

Expert 375 26 93.52% 0.04%
Matched 360 41 401 89.78% 0.05%
Unmatched 379 22 94.51% 0.09%

identifying background is important. Considering the large
amount of background and the fact there are no background
“objects” like there are foreground objects, quantifying the
accuracy on the background is more difficult than quantifying
the accuracy on the foreground.

There are a few situations where humans are currently
significantly better at identifying correctly than the CNNs de-
veloped in this paper. These cases, described below, accounted
for many of the geese the CNNs failed to find and also for
some of the misclassified background.

The process used to mosaic the images can create arti-
facting. Dramatic rainbow artifacting can occur on the right
and bottom edge of the mosaics, as seen in Fig. 5. This
dramatic coloration can confuse the CNN as there is the

possibility of random coloration being similar to the objects
being detected. However, this artifacting is obviously an error
to human observers.

The best way to combat the artifacting issue would be to
either: (i) manually crop the mosaics to ensure there are no
artifacts in the dataset; or (ii) use the original images from the
UAS flights instead of the mosaic images. The first solution
is manageable on the small scale and is a reasonable pre-
processing step before inclusion into the dataset, but may
become cumbersome for larger projects and generalization.
The second solution increases the number of images for
identification by an order of magnitude, meaning the data will
take longer to categorize by the citizen scientists and experts
alike. The second solution also requires methods to handle



(a) Original Image (red boxes
around expert identified white
phase snow geese)

(b) Prediction by expert CNN (c) Prediction by matched CNN (d) Prediction by unmatched
CNN

Fig. 6. Predictions on an image with rocks being misclassified as snow geese. The expert CNN misclassified the least amount of background with matched
doing slightly worse and the unmatched doing worse still.

double counting in overlapping images.
Phantom objects are another potential error from the mo-

saicing process. Since the mosaic is generated by interleaving
several images with an 80% overlap, sometimes the algorithm
gets confused on the exact location of an object and includes a
phantom object nearby. As the images are taken by a UAV over
time, it is also possible that some geese are in some location
one image, but by the time an overlapping image is taken
they have moved. These phantom objects are more transparent
than the original object, as seen in Fig. 7. Human observers
can easily identify phantom objects; however, the CNNs have
difficulty identifying phantoms due to the transparent nature
of the phantom objects altering the RGB values significantly
enough from a true object.

Another case where the CNNs was less likely to find a goose
than a user is if part of the goose was hanging off the edge
of the image. In this case, there might not be enough pixels
comprising of the goose for the CNN to identify. Also most
of the training sub-images have the geese roughly centered in
the image.

2) Blob Counter: The prediction images had a blob detector
run over them to estimate the number of each species in that
image. The numbers generated by the blob detector were then
compared to the number of geese identified by the experts. The
results for each CNN over the whole dataset of test MSIs can
be found in Table VI. It can be seen that the expert CNN did
the best overall, but still over estimated the number of white
phase snow geese by 100%. Although the unmatched dataset
did the best at finding all the white phase geese identified
by the experts as seen above, it did the worst in terms of
overestimating the number of geese. Presumably, the reason
for this is that the unmatched dataset is more likely to have
rocks misidentified as white phase snow geese. Evidence of

5This is the error when MSIs containing artifacts were disregarded

this hypothesis can be found in Figure 5 where it can be seen
that the unmatched CNN identified the large rock in the image
as white phase. The expert CNN, however, correctly identified
it as background.

As noted above, some of the images contained artifacts from
the mosaicing process. These accounted for a large of number
of the blobs counted, especially when using the unmatched
CNN. To see how badly artifacts affected the CNNs, the
images containing artifacts were discarded from consideration
in the blob counter. The results after removing artifacted
images can be found in the “%Error Adjusted*” column of
Table VI.

After removing MSIs that contained artifacts, 233 MSIs
remained. For the expert dataset, the total error in the count
was +331 blobs. 227 of these errors were found in only 23
images6. That is, almost 70% of the error was contained in
approximately 10% of the images. For the matched dataset,
approximately 77% of the errors were in 10% of the images
and for the unmatched set 65% of the errors were in 10% of
the images7.

As seen by the results above, a small amount of background
misclassification by the CNN in the training and testing phases
can propagate into a large misclassification during the blob
counter. Over the entire imagery, background makes up more
than 99% of the total pixel area. It can be seen by comparing
Tables V and VI that a mere increase of 0.05% of misclassified
background pixels between the expert and unmatched dataset
caused an extra 306% error in the blob counter. This is
considerable, especially when it is taken into account that
the expert CNN did only 0.16% better on the test IDX than
the unmatched CNN. From the results of these networks,

6Errors were computed on a per image basis
7The particular images in the worst 10% varied from CNN to CNN with

some overlap



TABLE VI
BLOB COUNTER RESULTS - WHITE PHASE ONLY

CNN Calculated Actual Error %Error %Error Adjusted5

Expert 791 +397 +100% +88%
Matched 1136 394 +742 +188% +150%
Unmatched 1993 +1599 +406% +250%

Fig. 7. Example of phantom objects created by the mosaicing process

it would seem that it is desirable to be a little better at
classifying background at the cost of being not as good at
identifying geese. This is, once again, because of the nature
of the data, massive amounts of background with tiny amounts
of foreground.

VI. CONSLUSION

While the results are encouraging, especially when com-
pared against similar automated object detection projects using
RGB images from UAS flights, there are still several issues
that need addressing to reliably run a CNN over the UAS
imagery to accurately detect lesser snow geese — and poten-
tially other ecological data. The extremely small size of the
objects compared to the background, the minuscule ratio of
foreground to background in the images, and the prevalence
of background with similar characteristics to the objects being
detected are all major concerns.

Although there is still some work to be done to make the
CNNs more accurate, there were encouraging results showing
the efficacy of using citizen science observations as input for
the CNNs. As shown in the blob counter results, Sec. V-B2,
individual citizen scientists produce training data that is a poor
candidate for CNN training when compared to experts. How-
ever, when matching individual citizen scientists and taking
the intersecting observations of the same objects, the quality

of the training data is dramatically improved. The matched
observations are still not as good as the expert data, but with
further matching to more than two users and implementation
of some techniques discussed below, citizen scientists can be
further shown to be useful for creating good initial training
data.

What do these results mean for automation of detection
and counting of lesser snow geese? Even if the blob counter
isn’t perfect in accuracy, the CNNs can still save a significant
amount of expert and citizen scientist time. Instead of showing
every image to the users, only images with areas identified by
the CNN as non-background could be shown to the users.
In addition to reducing the amount of imagery shown it
could potentially help reduce errors by the users. By mostly
showing “interesting” images containing geese and reducing
the number of uninteresting, monotonous images shown, user
fatigue could potentially be reduced. Testing whether this
conjecture holds true is outside of the scope of this paper,
but its potential benefit should not be overlooked.

VII. FUTURE WORK

A. Feedback Loop

There are some similar objects that are misclassified
throughout the imagery. One proposal to decrease the amount
of false positives is to ensure that the commonly misclas-
sified objects are included in the background dataset, thus
increasing the probability of being correctly identified. To
automate this process, a feedback loop will be implemented
that takes the misclassified areas from the blob counter as
shown in Sec. V-B2 and retrains the CNN on the “harder”
data to identify. It is hopeful that this process can be fully
automated and reduce the misclassification errors of the CNNs
dramatically. An initial exploration into this has been started
and is giving promising results.

B. Turn-Key Application

An obstacle for any field-scientist wanting to implement a
similar system will be the requirement of a technical team to
develop and maintain the web portal and infrastructure. As
a continuation of the citizen science portion of this project,
an attempt to generalize the architecture to develop a turn-
key system will be made. The goal is that this system will
be configurable and usable by a variety of projects requiring
object detection in imagery. The generalized system would still
require a technical team to get running, but should increase
the viability of using these techniques and systems on other
similar projects.
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