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ABSTRACT
Transfer learning entails taking an artificial neural network (ANN)

that is trained on a source dataset and adapting it to a new target

dataset. While it has been shown to be quite powerful, its use has

generally been restricted by architectural constraints. Previously, in

order to reuse and adapt an ANN’s internal weights and structure,

the underlying topology of the ANN being transferred across tasks

must remain mostly the same while a new output layer is attached,

discarding the old output layer’s weights. This work introduces

network-aware adaptive structure transfer learning (N-ASTL), an

advancement over prior efforts to remove this restriction. N-ASTL

utilizes statistical information related to the source network’s topol-

ogy and weight distribution in order to inform how new input and

output neurons are to be integrated into the existing structure. Re-

sults show improvements over prior state-of-the-art, including the

ability to transfer in challenging real-world datasets not previously

possible and improved generalization over untransferred RNNs.
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1 INTRODUCTION
As predictive analytics becomes increasingly more commonplace,

there is a widespread and growing number of real-world systems

that stand to benefit from an improved ability to forecast and pre-

dict data. In many fields, such as power systems, aviation, trans-

portation, and manufacturing, developing engines for predictive

analytics requires time series forecasting algorithms capable of

adapting to noisy, constantly changing sensors as well as major

system modifications or upgrades. Mechanical systems, such as

self-driving cars, robotics, aircraft, and unmanned aerial systems

(UAS) in particular would benefit immensely from the ability to

more accurately predict potential equipment and systems failure,

which is critically important for cost and safety reasons. Developing

predictive models for these systems poses a particularly challeng-

ing problem given that these systems experience rapid changes in

terms of their operation and sensor capabilities.

Transfer learning potentially offers a solution. It has already

proven to be a powerful tool to improve the optimization of deep

artificial neural networks (ANNs), allowing them to re-use and

fine-tune knowledge gained from training on large, prior datasets.

However, transfer learning has mostly been limited to problems

which require minimal to no topological changes, i.e., changing the
number of neurons and/or their synaptic connectivity, so that the

previously trained weights and structure can be more easily fine

tuned to the new target dataset. This is common in ANN specializa-

tion, or “pre-training”. Gupta et al. specialized a recurrent neural

network (RNN) trained to predict 20 different phenotypes from clin-

ical data, by retraining it to predict previously unseen phenotypes

with limited data [7]. Zhang et al. applied the same principle when

predicting the remaining useful life (RUL) of various systems when

data was scarce [26]. Other examples include [13, 24–26].

Approaches involving some structural modification include work

by Mun et al., which removed an ANN’s output layer, replacing

it with two additional hidden layers and a new output layer [14].

Partial knowledge transfer has also been done through the use of

pre-trained embeddings of (sub)words and phrases [6, 12]. Hin-

ton et al. proposed the concept of “knowledge distillation”, where

an ensemble of teacher models are “compressed” to a single pupil

model [8]. Tang et al. also conducted the converse of this experi-

ment – they trained a complex pupil model using a simpler teacher

model [19]. Their findings demonstrated that knowledge gathered

https://doi.org/10.1145/3377930.3390193
https://doi.org/10.1145/3377930.3390193
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by a simple teacher model can effectively be transferred to a more

complex pupil model which will have greater generalization ca-

pability. Deo et al. also concatenated mid-level features from two

datasets as input to a target feed forward network [4].

Neuroevolutionary approaches have mostly focused on utilizing

indirect encodings for transfer learning, such as Taylor et al. uti-
lizing NeuroEvolution of Augmenting Topologies (NEAT [18]) to

evolve task mappings to translate trained neural network policies

between a source and target [20]. Yang et al. took this concept fur-

ther to designing networks for cross-domain, cross-application, and

cross-lingual transfer settings [23]. Vierbancsics et al. used a differ-

ent approach where an indirect encoding was evolved that could be

applied to ANN tasks that required different neural structures [21].

To date, transfer learning research has almost exclusively focused

on classification tasks, with most work focusing on feed forward

and convolutional neural networks (CNNs), and has mostly avoided

any major architectural changes to the ANNs being transferred.

While some studies have utilized recurrent neural networks (RNNs),

they have not attempted to develop RNNmodels for time series data

forecasting, a very challenging regression problem (see Section 4

for example prediction problems and why traditional statistical

auto-regressive forecasting methods like ARIMA are insufficient).

This work advances transfer learning to this area, as these capa-

bilities will play a crucial role in developing predictive engines for

previously described systems.

Prior work introduced adaptive structure transfer learning (ASTL),
where input and output nodes were added and removed to adapt

the structure of an RNN evolved on a source data set to a target data

set [1]. However, this work did not take into account the overall

structure and weight distribution of the transferred network, only

adding minimal connections for the newly added input and out-

put nodes. This work proposes a significantly improved approach

for transferring RNN knowledge across tasks through network-
aware adaptive transfer learning (N-ASTL). N-ASTL overcomes the

limitations of ASTL by utilizing statistical information related to

the source RNN’s topology and weight distribution to inform the

adaptation process. N-ASTL shows significant improvements over

previously reported results, including successful transfer learning

on the challenging data sets where ASTL previously failed.

2 EVOLUTIONARY EXPLORATION OF
AUGMENTING MEMORY MODELS

This work utilizes the Evolutionary eXploration of Augmenting

Memory Models (EXAMM) algorithm [15] to drive the neuroevolu-

tion process. EXAMM evolves progressively larger RNNs through

a series of mutation and crossover (reproduction) operations. Mu-

tations can be edge-based: split edge, add edge, enable edge, add
recurrent edge, and disable edge operations, or work as higher-level

node-based mutations: disable node, enable node, add node, split
node and merge node. The type of node to be added is selected

uniformly at random from a suite of simple neurons and complex

memory cells: ∆-RNN units [16], gated recurrent units (GRUs) [2],

long short-term memory cells (LSTMs) [9], minimal gated units

(MGUs) [27], and update gate RNN cells (UGRNNs) [3]. This allows

EXAMM to select for the best performing recurrent memory units.

EXAMM also allows for deep recurrent connections which enables

the RNN to directly use information beyond the previous time step.

These deep recurrent connections have proven to offer significant

improvements in model generalization, even yielding models that

outperform state-of-the-art gated architectures [5]. To the authors’

knowledge, these capabilities are not available in other neuroevolu-

tion frameworks capable of evolving RNNs, which is the primary

reason EXAMMwas selected to serve as the basis of this work. Due

to space limitations we refer the reader to Ororbia et al. [15] for
more details on the EXAMM algorithm. The N-ASTL and ASTL

implementations have been made freely available and incorporated

into EXAMM github repository
1
.

To speed up the neuro-evolution process, EXAMM utilizes an

asynchronous, distributed computing strategy that incorporates the

concept of islands to promote speciation. This mechanism encour-

ages both exploration and exploitation of massive search spaces.

A master process maintains the populations for each island and

generates new RNN candidate models from the islands in a round-

robin manner. Workers receive candidate models and locally train

them via back-propagation through time (BPTT), making EXAMM

a memetic algorithm. When a worker completes the training of an

RNN, that RNN is inserted back into the island that it originated

from. Then, if the number of RNNs in an island exceeds the island’s

maximum population size, the RNN with the worst fitness score,

i.e., validation set mean squared error (MSE), is deleted.

This asynchronous approach is particularly important given that

the generated RNNs will have different topologies, with each can-

didate model requiring a different amount of time to train. This

strategy allows the workers to complete the training of the gen-

erated RNNs at whatever speed they are capable of, yielding an

algorithm that is naturally load-balanced. Unlike synchronous paral-

lel evolutionary strategies, EXAMM easily scales up to any number

of available processors, allowing population sizes that are inde-

pendent of processor availability. The EXAMM codebase has a

multi-threaded implementation for multi-core CPUs as well as an

MPI [11] implementation that allows EXAMM to readily leverage

high performance computing resources.

To initialize the island populations, EXAMM “seeds” each island

population with the minimal network topology possible for the

given inputs and outputs – a topology with no hidden nodes where

each input node has a single feed forward connection to each out-

put node. Each island population utilizes this minimal genome as
a seed network as the first RNN in its population, which is ulti-

mately sent to the first worker requesting an RNN to be trained.

Subsequent requests for work from that island create new RNN

candidates from mutations of the seed network until the population

is full. When a given island population is full, EXAMM will start

generating new RNNs from that island utilizing both mutation and

intra-island crossover (both parents are selected within that same

island). When all island populations are full, EXAMM will begin

to generate additional, new RNNs from an inter-island crossover

process. This crossover selects the first parent from the island that

an RNN is being generated from and matches it with the most fit

RNN from a randomly selected other island to serve as the second

parent.

1
https://github.com/travisdesell/exact
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Algorithm 1 Removal of Unused Nodes and Edges

function RemoveUnused(SeedNetwork sn, Param[] targetOut-

puts, Param[] targetInputs)

▷ Remove unused input and output nodes

for all InputNode i in sn.inputNodes do
if i.param not in targetInputs then

sn.removeNode(i)

for all OutputNode o in sn.outputNodes do
if o.param not in targetOutputs then

sn.removeNode(o)

▷ Mark reachability of edges and hidden nodes

sn.markForwardReachability()

sn.markBackwardReachability()

for all Node n in sn.hiddenNodes do
if !n.forwardReachable() or !n.backwardReachable() then

n.setDisabled()

for all Edge e in sn.edges do
if !e.forwardReachable() or !e.backwardReachable() then

e.setDisabled()

3 NETWORK-AWARE ADAPTIVE
STRUCTURE TRANSFER LEARNING

3.1 Adaptive Structure Transfer Learning
Prior work on adaptive structure transfer learning (ASTL) proposed

a simple scheme for transfer learning in EXAMM by hijacking the

island seeding process to ultimately modify a previously trained

RNN instead of the minimal genome [1]. The previously trained

RNN is itself adapted to a new dataset through the following steps:

i) removing unused outputs, ii) connecting new outputs to all in-

puts, iii) removing unused inputs, iv) connecting new inputs to all

outputs, and v) disabling vestigial hidden nodes and edges.

The disabling of vestigial structures is necessary as removing the

unused inputs and outputs can potentially disconnect parts of the

RNN’s topology, which, if retained, would lead to wasted computa-

tion. To safeguard against this, all edges and nodes are flagged for

forward reachability, i.e., there is a path to the edge or node from an

enabled input node, and backward reachability, i.e., there is a path
from the node or edge to any output. Nodes and edges which are

not forward and backward reachable are labeled as vestigial and are

disabled. They can, however, later be reconnected and enabled via

EXAMM’s mutation/crossover operations, essentially boostrapping

the learning process by allowing to easily reuse previously learned

structure. This process is formalized in Algorithms 1 and 2.

3.2 Network-Aware Adaptive Structure
Transfer Learning

While ASTL had some preliminary success in transferring RNNs for

time series modeling tasks, it only added connections between input

and output nodes while ignoring the internal latent structure of the

network being transferred. Furthermore, it re-initialized all weights

in the network, only retaining the source network’s structure. We

extend ASTL to network-aware adaptive structure transfer learning
(N-ASTL), which utilizes information about the seed network to

improve the transfer learning process. Our hypothesis is that during

Algorithm 2 ASTL Seed Network Adaptation

function ASTL(SeedNetwork sn, Param[] targetOutputs,

Param[] targetInputs)

RemoveUnused(sn, targetOutputs, targetInputs)

▷ Add new input and output nodes

for all Param ti in targetInputs do
if !sn.hasInputForParam(ti) then

sn.addInputNode(new InputNode(ti))

for all Param to in targetOutputs do
if !sn.hasOutputForParam(to) then

sn.addOutputNode(new OutputNode(to))

▷ Connect all new input and output nodes

for all InputNode i in sn.inputNodes do
if i.param in targetInputs then

for all OutputNode o in sn.outputNodes do
sn.addEdge(i, o,weiдht ←U(−0.5, 0.5))

for all OutputNode o in sn.outputNodes do
if o.param in targetOutputs then

for all InputNode i in sn.inputNodes do
sn.addEdge(i, o,weiдht ←U(−0.5, 0.5))

the process of evolving and training an RNN being used as a seed

network, the RNN already contains useful information about the

form of its topology as well as weight distribution information

which can be used to inform the transfer learning process. As such,

N-ASTL leverages knowledge of a seed network’s connectivity and

weight distribution to connect new input and output nodes. N-ASTL

involves three strategies:

3.2.1 Epigenetic Weight Initialization. In ASTL, new node biases

and edgeweightswere initialized uniformly at random,U(−0.5, 0.5),

similar to how EXAMM initializes weights in the minimal seed

genome. In N-ASTL, before adapting any structure, the mean, µw ,

and standard deviation, σw , of the seed network’s weights are com-

puted. Afterwards, when new edges are generated during the seed

network adaption process, weights are initialized to a dynamic nor-

mal (Gaussian) distribution driven by µw and σw , or N(µw ,σw ).
This mirrors how EXAMM performs epigenetic/Lamarckian weight

and bias initialization when performing mutation and crossover

operations.

3.2.2 Output-Aware Input Connection. Algorithm 3 presents the

output-aware input connection procedure for N-ASTL. Similar to

our dynamic weight initialization scheme, before adapting any

structure of the seed network, the mean, µo , and standard devi-

ation, σo , of the number of outputs that each input and hidden

node has in the network are calculated. Following this, the unused

input and output nodes are then removed from the seed network,

with any resulting vestigial hidden nodes and edges appropriately

disabled. Following this, the new output and input nodes are added

to the network. Each new input node is connected to either out-

put nodes or enabled hidden nodes with a number of connections

that is randomly selected according to a Gaussian distribution but

with the restriction that at least one connection must be made, i.e.,
max(1,N(µo,σo )). This ensures that all input nodes are connected
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Algorithm 3 N-ASTL Seed Network Adaptation: Output-Aware

Input Connection

function NASTL-Inputs(SeedNetwork sn, Param[] targetOut-

puts, Param[] targetInputs)

RemoveUnused(sn, targetOutputs, targetInputs)

µw ← sn.getWeightMean()

σw ← sn.getWeightStdDev()

µo ← sn.getMeanOutputs()

σo ← sn.getStdDevOutputs()

▷ Connect the new input nodes

for all InputNode i in sn.inputNodes do
if i.param in targetInputs then

nInputs ←max(1,N(µo,σo ))
Node[] nodes ← sn.getEnabledHiddenNodes() ∪

sn.getOutputNodes()

shuffle(nodes)

for j ← 1 to nInputs do
sn.addEdge(i, nodes[j],weiдht ← N(µw ,σw ))

to the seed network in a functional way that also follows a similar

distribution to the RNN’s existing structure.

3.2.3 Input-Aware Output Connection. Algorithm 4 presents the

input-aware output connection procedure for N-ASTL. New output

nodes are connected in a similar fashion to the new input nodes.

Before any adaptation, the mean, µi , and standard deviation, σi ,
of the number of inputs that each output and hidden node has in

the network is calculated. After removing unused input and output

nodes (along with disabling vestigial edges and hidden nodes) and

then adding the new input and output nodes, output nodes are

potentially wired to any input node or enabled hidden node. The

number of connections is then sampled from aGaussian distribution

over the number of inputs, with again the restriction that at least

one connection is made, i.e.,max(1,N(µi ,σi )).

Algorithm 4 N-ASTL Seed Network Adaptation: Input-Aware

Output Connection

functionNASTL-Outputs(SeedNetwork sn, Param[] targetOut-

puts, Param[] targetInputs)

RemoveUnused(sn, targetOutputs, targetInputs)

µw ← sn.getWeightMean()

σw ← sn.getWeightStdDev()

µi ← sn.getMeanInputs()

σi ← sn.getStdDevInputs()

▷ Connect the new output nodes

for all OutputNode o in sn.outputNodes do
if o.param in targetOutputs then

nOutputs ←max(1,N(µi ,σi ))
Node[] nodes ← sn.getEnabledHiddenNodes() ∪

sn.getInputNodes()

shuffle(nodes)

for j ← 1 to nOutputs do
sn.addEdge(nodes[j], o,weiдht ← N(µw ,σw ))

4 TRANSFER LEARNING TASKS
To compare to prior state of the art results reported for the origi-

nal ASTL, we utilize the same open source aviation based dataset

which has been provided as part of the EXAMM github repository
2
.

The source data for this transfer learning problem consists of 36

flights gathered from the National General Aviation Flight Informa-

tion Database
3
. It includes three different airframes, with 12 flights

coming from Cessna 172 Skyhawks (C172s), 12 from Piper PA-28

Cherokees (PA28s), and the last 12 from Piper PA-44 Seminoles

(PA44s). Each of the 36 flights came from a different aircraft. The

different airframes have significant design differences (see Figure 1).

The C172s are “high wing” (wings are on the top) with a single

engine, the PA28s are “low wing” (wings are on the bottom) and

have a single engine, and the PA44s are low wing with dual engines.

The flight data consists of per second readings and the duration

of each flight data file ranges from 1 to 3 hours. Each airframe

shares 18 common sensor parameters, C172 and PA44 add 7 ad-

ditional sensor parameter which the PA28 does not have, C172s

have 3 additional engine parameters which PA-28s and PA-44s do

not have, and PA-44s add an additional 11 parameters, mostly re-

lated to its second engine, which C172s and PA-28s do not have.

All available parameters were used as inputs and Appendix A pro-

vides a detailed tabular description of which sensors each airframe

has and which were used as prediction outputs (if available). Fig-

ure 2 provides an example of the data being predicted showing

the pitch and E1 EGT1 values from PA28 flight 8, illustrating the

challenges involved. The data is highly noisy with sudden changes,

non-stationary, non-seasonal, and has varying correlations to the

other input parameters. Due to this, traditional statistical methods,

e.g., from the auto-regressive integrated moving average (ARIMA)

family of models are not well suited to the task.

5 RESULTS
5.1 Hyperparameter Settings
All EXAMM neuro-evolution runs utilized 4 islands, each with a

max population size of 10. New RNNs were generated via mutation

at a rate of 70%, intra-island crossover at a rate of 20%, and inter-

island crossover occurred at a rate of 10%. 10 out of EXAMM’s 11

mutation operations were utilized (all except for split edge), each
chosen with a uniform 10% chance. EXAMM generated new nodes

by selecting from simple neurons, ∆-RNN, GRU, LSTM, MGU, and

UGRNN memory cells uniformly at random. Recurrent connections

could span any time-skip generated betweenU(1, 10).

All RNNs were locally trained for 4 epochs via stochastic gradi-

ent descent (SGD) using backpropagation through time (BPTT) [22]

to compute gradients, all using the same hyperparameters. RNN

weights were initialized by EXAMM’s Lamarckian strategy (de-

scribed in [15]), which allows child RNNs to reuse parental weights,

significantly reducing the number of epochs required for the neu-

roevolution’s local RNN training steps. SGDwas runwith a learning

rate of η = 0.001 and used Nesterov momentum with µ = 0.9. For

the memory cells with forget gates, the forget gate bias had a value

2
https://github.com/travisdesell/exact/tree/master/datasets/2019_ngafid_transfer

3
http://ngafid.org
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(a) Cessna 172 Skyhawk (b) Piper PA-28 Cherokee (c) Piper PA-44 Seminole

Figure 1: The data used for transfer learning comes from three different airframes (images under creative commons licenses).

Figure 2: Example of the pitch and E1 EGT1 parameters from PA28 flight 8 in the NGAFID dataset.

of 1.0 added to it (motivated by [10]). To prevent exploding gradi-

ents, gradient clipping [17] was used when the norm of the gradient

exceeded a threshold of 1.0. To combat vanishing gradients, gradi-

ent boosting (the opposite of clipping) was used when the gradient

norm was below 0.05. These parameters have selected by hand

tuning during prior experience with the EXAMM algorithm and

this data set.

5.2 Experimental Design
One major goal of this work is to facilitate and enable the fast devel-

opment of predictive systems. In the realm of aviation, this could

mean that a given organization may operate a fleet of aircraft of

certain airframes and employ RNN estimators as part of their pre-

dictive systems. Instead of having to train new RNNs from scratch

every time existing airframes are modified, new airframes start

being utilized, or sensor systems are upgraded, they can instead

adapt RNNs trained on their existing airframes and transfer them

over for use in these new or modified systems. This transfer process

would also require less data compared to the scenario of training

Inputs Inputs Outputs Outputs

Task Added Removed Added Removed

PA28 to PA44 13 0 4 0

PA28 to C172 8 0 3 0

C172 to PA28 0 8 0 3

C172 to PA44 10 3 4 0

PA44 to PA28 0 13 0 7

PA44 to C172 3 10 0 7

Table 1: Transfer Learning Tasks

estimators/predictors from scratch. To mirror such a scenario, we

used EXAMM to evolve and train RNNs on each of the three air-

frames (C172s, PA28s and PA44s) for 4, 000 generated and trained

RNNs, i.e. 4, 000 evaluated genomes. This was repeated 10 times

for each airframe. The flight data files were split up into training

and validation data, with the first 9 used as training data and last 3

used as validation data.

To appropriately evaluate our proposed N-ASTL methodology,

we utilized the same prediction task defined in [1], which was to

predict the exhaust gas temperature (EGT) engine parameters for

the target airframe, as well as a new task predicting non-engine
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(a) C172 to PA28 (b) PA44 to PA28

(c) PA28 to C172 (d) PA44 to C172

(e) PA28 to PA44 (f) C172 to PA44

Figure 3: Convergence rates (in terms of best MSE on validation data) for the EXAMM runs starting from scratch (Basic C172,
PA28 or PA44) compared to startingwith a seed network transferred from a different airframewhen predicting engine exhaust
gas temperature (EGT) values.

parameters. RNNs predicting on PA28 would predict engine 1 (E1)

EGT1, those for C172s would predict E1 EGT1-4, and RNNs pre-

dicting on PA44 data would predict both E1 EGT1-4 and engine 2

(E2) EGT1-4. The non-engine prediction parameters were Altitude

Miles Above Sea Level (AltMSL), Indicated Air Speed (IAS), Lateral

Acceleration (LatAc), Normal Acceleration (NormAc), Pitch and

Roll. We investigated the transfer learning methods using each

airframe as a source and target, resulting in six different transfer

learning examples: C172 to PA28, C172 to PA44, PA28 to C172, PA28

to PA44, PA44 to C172, and PA44 to PA28.

Table 1 presents the different transfer learning tasks examined,

along with how many input and output parameters were and re-

moved in each example. Input nodes were added or removed by the

previously described strategies to utilize all available sensor inputs

for the target data. Likewise, outputs were added or removed to

predict all the available EGT parameters. For the non-engine param-

eters no outputs needed to be added or removed. For each of the 10

repeated runs, the best genome in each set after the 4, 000 genome

evaluations was selected to be used as a seed network for the trans-

fer learning strategies. For the 3 airframes, the 10 selected seed
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(a) C172 to PA28 (b) PA44 to PA28

(c) PA28 to C172 (d) PA44 to C172

(e) PA28 to PA44 (f) C172 to PA44

Figure 4: Convergence rates (in terms of best MSE on validation data) for the EXAMM runs starting from scratch (Basic C172,
PA28 or PA44) compared to starting with a seed network transferred from a different airframe predicting the non-engine
parameters (AltAGL, IAS, LatAc, NormAc, Pitch and Roll).

networks were then utilized to evaluate the different adaptation

strategies. We examined using ASTL and N-ASTL independently,

as well as together (denoted as ASTL + N-ASTL) for connecting
the new input and output nodes. For each of these three strategies,

we used either ASTL weight initialization or N-ASTL epigenetic

weight initialization (denoted with +epi). For the runs where PA28
was the target, as we only removed inputs and outputs, we only

examined ASTL with and without epigenetic weight initialization,

as there were no new nodes to connect.

5.3 Structural Adaptation Evaluation
Figures 3 and 4 compare the different seed network adaptation

strategies and their combinations using each of the airframes (C172,

PA28 and PA44) as a source to be transferred to each of other

airframes (the targets) evolved to predict the engine parameter

values and non-engine parameter values, respectively.

For the experiments using the PA28 data as a target, as no input

or output nodes were added so transfer learning was tested with

and without the N-ASTL epigenetic weight initialization. In all four

cases, epigenetic weight initialization had strong error reduction
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and learned the task much quicker. Additionally, improved results

were seen transferring from the PA44 RNNs as a source, where the

prior ASTL results had failed.

For the experiments using the C172 data as a target, again large

improvements were seen utilizing epigenetic weight initialization.

In all cases, N-ASTL+epi learned the quickest and resulted in the

lowest error, with N-ASTL+ASTL+epi providing the next best results
followed by ASTL+epi. Even without epigenetic weights, N-ASTL

performed the strategies involving ASTL connectivity.

For the experiments using the PA44 data as a target, N-ASTL

shows its significance very strongly. Prior results with ASTL were

unable to improve over utilizing EXAMM from scratch on the PA44

data, while in this case, even without epigenetic weights N-ASTL is

still able to improve over EXAMM from scratch. Additionally, the

use of epigenetic weights shows a very large improvement, with

all three versions showing significant improvement over N-ASTL.

In three of the four cases, again N-ASTL+epi learned the fastest

and found the most accurate results, except in the case of C172 to

PA44 on the engine parameter predictions, where ASTL+epi and

N-ASTL+ASL+epi performed slightly, but comparatively better.

5.4 Conclusions
Overall, we find these results strongly positive since they show that

the N-ASTL strategies provide significantly better performance over

all the experiments. Furthermore, in almost every case, the N-ASTL

strategies had better performing RNNs after 2, 000 genomes com-

pared to the best found after 4, 000 genomes when evolving RNNs

from scratch. Additionally, if we look at the curvature of these plots,

the RNNs evolved from scratch on the ASTL and non-epigenetic

weight tests were converging to performance which would never

reach that found by the N-ASTL runs. This suggests that transfer-

ring RNNs trained on other data and seeding them with genomes

in a network aware manner is leading to more generalizable RNN

architectures.

Epigenetic weight initialization significantly improved the re-

sults in all cases, showing that utilizing network aware weight

distributions for weight initialization is highly important for the

transfer learning process. Additionally, in 6 of the 8 cases which

added or removed inputs and outputs (i.e., those transferring to

C172 or PA44), N-ASTL without epigenetic weight initialization

also outperformed training from scratch, suggesting that utilizing

network aware topology information is also important to the pro-

cess. This is further backed by the fact that in 6 of those 8 cases the

N-ASTL+epi runs provided the best results. The two cases they did

not, PA28 to PA44 and C172 to PA44, were tests where additional

outputs were added, which suggests that when additional outputs

are added making sure they are connected to all inputs is impor-

tant, whereas making sure new inputs are connected to all existing

outputs is not.

6 DISCUSSION
This work investigates the use of a novel network-aware adap-

tive structure transfer learning strategy (N-ASTL) to further speed

transfer learning of deep RNNs. N-ASTL utilizes statistical infor-

mation about the source RNN’s topology and weight distributions

to inform how it should be adapted to new data sets which have

different input and output parameters, necessitating the use of a

different neural architecture. These strategies were evaluated using

the challenging real world problem of performing transfer learning

of RNNs trained to predict aviation engine parameters between

three different airframes with different designs and engines.

N-ASTL provided significant performance improvements over

prior state of the art, which did not take into account network

topology or weight distributions. Further, N-ASTL was shown to

be able to successfully perform transfer learning on tasks where

transfer learning was not previously possible. Interestingly enough,

this work shows that in many cases the transfer learning strategies

are able to evolve RNNs that outperform ones which started from

scratch but were evolved and trained on the target dataset for

twice as long. In many cases, the curvature of those plots suggest

they would never reach the performance of the RNNs seeded by

a transferred network. This suggests that the transfer learning

strategy is able to evolve more robust and generalizable RNNs, as

performance of the non-transferred RNNs levels off at a significantly

lower accuracy than the transfer learning evolved RNNs. These

results are significant and showcase the use of transfer learning as a

means to enhance predictive systems in aviation, with applications

to other domains involving time series data of different input/output

dimensionalities.

This study also opens up a number of directions for future work.

While N-ASTL only seeds EXAMM with a single adapted network

structure, the manner in which it connects new inputs and outputs

is stochastic. This provides the potential to generate multiple seed

network candidates to provide more initial variety to EXAMM’s

island populations which could lead to improved reliability and

robustness when searching for optimal RNN architectures. Addi-

tionally, there appears to be a difference between adding inputs to

adding outputs. While the tests which only added inputs but not

outputs had N-ASTL with epigenetic weights achieving the best

results, the tests which added outputs (those transferring to PA44)

showed better performance when also adding in ASTL connectivity.

It is worth examining if using N-ASTL plus a modified version of

ASTL which only fully connects new outputs to inputs may prove

better in these cases. Further, N-ASTL has shown that connecting

new inputs and outputs to nodes in the hidden layers is important.

It is worth further study to see if simply connecting new inputs

and outputs to all hidden nodes provides any benefit.

Lastly, while this work has focused on the challenging prob-

lem of time series prediction with RNNs, future work will involve

applying N-ASTL to RNN classification tasks, such as natural lan-

guage processing, to see if transferring between different language

dictionaries or word and character embeddings provides similar im-

provements, as well as to convolutional neural networks, allowing

transfer learning between images and output spaces of different

shapes and sizes.
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Appendices

APPENDIX A AVIATION DATASET PARAMETERS
This paper utilizes 12 flight logs each from aircraft of three different airframes: Cessna 172 Skyhawk (C172s), Piper-Archer 28 Cherokees

(PA-28s) and Piper-Archer 44 Seminoles (PA-44s). These aircraft share 18 common sensor parameters, and then each has varying sensor

parameters for their engine(s). The data files used in this work are freely available as comma separated value (CSV) format as part of the

EXAMM github repository
4
. The following table presents which sensors are present for which airframe and which were used as prediction

outputs (if available), all available parameters were used as inputs.:

Cessna 172 Piper-Archer 28 Piper-Archer 44 Potential Output

Parameter Name Skyhawk Cherokee Seminole (Engine) (Non-Engine)

Altitude Above Ground Level (AltAGL) x x x

Barometric Altitude (AltB) x x x

GPS Altitude (AltGPS) x x x

Altitude Miles Above Sea Level (AltMSL) x x x x

Fuel Quantity Left (FQtyL) x x x

Fuel Quantity Right (FQtyR) x x x

Ground Speed (GndSpd) x x x

Indicated Air Speed (IAS) x x x x

Lateral Acceleration (LatAc) x x x x

Normal Acceleration (NormAc) x x x x

Outside Air Temperature (OAT) x x x

Pitch x x x x

Roll x x x x

True Airspeed (TAS) x x x

Vertical Speed (VSpd) x x x

Vertical Speed Gs (VSpdG) x x x

Wind Direction (WndDir) x x x

Wind Speed (WndSpd) x x x

Absolute Barometric Pressure (BaroA) x x

Engine 1 Cylinder Head Temperature 1 (E1 CHT1) x x

Engine 1 Cylinder Head Temperature 2 (E1 CHT2) x

Engine 1 Cylinder Head Temperature 3 (E1 CHT3) x

Engine 1 Cylinder Head Temperature 4 (E1 CHT4) x

Engine 1 Exhaust Gas Temperature 1 (E1 EGT1) x x x x

Engine 1 Exhaust Gas Temperature 2 (E1 EGT2) x x x

Engine 1 Exhaust Gas Temperature 3 (E1 EGT3) x x x

Engine 1 Exhaust Gas Temperature 4 (E1 EGT4) x x x

Engine 1 Fuel Flow (E1 FFlow) x x x

Engine 1 Oil Pressure (E1 OilP x x x

Engine 1 Oil Temperature (E1 OilT) x x x

Engine 1 Rotations Per minute (E1 RPM) x x x

Engine 1 Manifold Absolute Pressure (E1 MAP) x

Engine 2 Cylinder Head Temperature 1 (E2 CHT1) x

Engine 2 Exhaust Gas Temperature 1 (E2 EGT1) x x

Engine 2 Exhaust Gas Temperature 2 (E2 EGT2) x x

Engine 2 Exhaust Gas Temperature 3 (E2 EGT3) x x

Engine 2 Exhaust Gas Temperature 4 (E2 EGT4) x x

Engine 2 Fuel Flow (E2 FFlow) x

Engine 2 Oil Pressure (E2 OilP) x

Engine 2 Oil Temperature (E2 OilT) x

Engine 2 Rotations Per minute (E2 RPM) x

Engine 2 Manifold Absolute Pressure (E2 MAP) x

4
https://github.com/travisdesell/exact/tree/master/datasets/2019_ngafid_transfer
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