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Abstract

Technical logbooks are a challenging and
under-explored text type in automated event
identification. These texts are typically short
and written in non-standard yet technical lan-
guage, posing challenges to off-the-shelf NLP
pipelines. The granularity of issue types de-
scribed in these datasets additionally leads to
class imbalance, making it challenging for
models to accurately predict which issue each
logbook entry describes. In this paper we fo-
cus on the problem of technical issue classi-
fication by considering logbook datasets from
the automotive, aviation, and facilities mainte-
nance domains. We adapt a feedback strategy
from computer vision for handling extreme
class imbalance, which resamples the training
data based on its error in the prediction process.
Our experiments show that with statistical sig-
nificance this feedback strategy provides the
best results for four different neural network
models trained across a suite of seven different
technical logbook datasets from distinct tech-
nical domains. The feedback strategy is also
generic and could be applied to any learning
problem with substantial class imbalances.

1 Introduction

Predictive maintenance techniques are applied to
engineering systems to estimate when maintenance
should be performed to reduce costs and improve
operational efficiency (Carvalho et al., 2019), as
well as mitigate risk and increase safety. Mainte-
nance records are an important source of informa-
tion for predictive maintenance (McArthur et al.,
2018). These records are often stored in the form
of technical logbooks in which each entry contains
fields that identify and describe a maintenance issue
(Akhbardeh et al., 2020a). Being able to classify
these technical events is an important step in the
development of predictive maintenance systems.

In most technical logbooks, issues are manually

labeled by domain experts (e.g., mechanics) in free
text fields. This text can then be used to classify or
cluster events by semantic similarity. Classifying
events in technical logbooks is a challenging prob-
lem for the NLP community for several reasons: (a)
the technical logbooks are written by various do-
main experts and contain short text entries with non-
standard language including domain-specific ab-
breviated words (see Table 1 for examples), which
makes them distinct from other short non-standard
text corpora (e.g., social media); (b) off-the-shelf
NLP tools struggle to perform well on this type of
data as they tend to be trained on standard contem-
porary corpora such as newspaper texts; (c) outside
of the clinical and biomedical sciences, there is a
lack of domain-specific, expert-based datasets for
studying expert-based event classification, and in
particular few resources are available for techni-
cal problem domains; and (d) technical logbooks
tend to be characterized by a large number of event
classes that are highly imbalanced.

Original Entry Pre-processed Entry
fwd eng baff seeal
needs resecured.

forward engine baffle seal needs
resecured.

r/h eng #3 intake gsk
leaking.

right engine number 3 intake
gasket leaking.

bird struck on p/w at
twy. bird rmvd.

bird struck on pilot window at
taxiway. bird removed

location rptd as nm
from rwy aprch end.

location reported as new mexico
from runway approach end.

Table 1: Original and text-normalized example data
instances illustrating that domain-specific terms (baf-
fle), abbreviations (gsk - gasket, eng - engine), and mis-
spellings (seeal - seal) are abundant in logbook data.

We address the aforementioned challenges with
a special focus on exploring strategies to address
class imbalance. There is wide variation in the num-
ber of instances among the technical event classes
examined in this work, as shown in Figure 1 and Ta-



Figure 1: Number of instances in 39 unbalanced classes of the aviation maintenance (Avi-Main) dataset.

ble 3. This extreme class imbalance is an obstacle
when processing logbooks as it causes most learn-
ing algorithms to become biased and mainly predict
the large classes (Kim et al., 2019). To overcome
this issue, we introduce a feedback loop strategy,
which is a repurposing of a method used to address
extreme class imbalance in computer vision (Bow-
ley et al., 2019), and examine it for classification of
textual technical event descriptions. This technique
is applied in the training of a suite of common clas-
sification models on seven predictive maintenance
datasets representing the aviation, automotive, and
facility maintenance domains.

This paper addresses these research questions:
RQ1: To which extent does the class granularity
and class imbalance present in technical logbooks
impact technical event classification performance,
and can a feedback loop for training data selection
effectively address this issue?
RQ2: Which classification models are better suited
to classify technical events for predictive mainte-
nance across logbook datasets representing differ-
ent technical domains?
The main contributions of this work include:

1. Experimental results showing strong perfor-
mance of the feedback loop in addressing the
class imbalance problem in technical event
classification across all datasets and models;

2. A thorough empirical evaluation of the per-
formance of the technical event classifier con-
sidering multiple models and seven logbook
datasets from three different domains.

2 Related Work

Most expert-domain datasets containing events
have focused on healthcare. For instance, Altuncu
et al. (2019) analyzed patient incidents in unstruc-
tured electronic health records provided by the
U.K. National Health Service. They evaluated a
deep artificial neural network model on the expert-
annotated textual dataset of a safety incident to
identify similar events that occurred. Deléger et al.
(2010) proposed a method to deal with unstructured
clinical records, using rule-based techniques to ex-
tract names of medicines and related information
such as prescribed dosage. Savova et al. (2010)
considered free-text electronic medical records for
information extraction purposes and developed a
system to obtain clinical domain knowledge.

Patrick and Li (2009) proposed the cascade meth-
ods of extracting the medication records such as
treatment duration or reason, obtained from pa-
tient’s historical records. Their approach for event
extraction includes text normalization, tokeniza-
tion, and context identification. A system using
multiple features outperformed a baseline method
using a bag of words model. Yetisgen-Yildiz et al.
(2013) proposed the lung disease phenotypes iden-
tification method to prevent the use of a hand-
operated identification strategy. They employed
NLP pipelines including text pre-processing and
further text classification on the textual reports to
identify the patients with a positive diagnosis for
the disease. Based on the outcome, they achieve



Tech. Event or Issue Label Example Instance of Technical Logbook Entry Abbr., Misspelling, Terminology
SUBSTANTIAL DAMAGE (1) AFT ON TAXI, WING STRUECK FUEL TRUCK, CHANDLER, AZ AFT, WING, STRUECK, FUEL
BAFFLE DAMAGE (2) R/H FWD UPPER BAFF SEAL NEEDS TO BE RESECURED R/H, FWD, BAFL
MINOR DAMAGE (1) SAW SML FLOCK FLYING UPON LDG FLARE, ACROSS RWY SML, LDG, RWY
UNKNOWN (1) NO DMG. BIRD REMAINS ON F/O WINDSCREEN DMG, F/O, WINDSCREEN
PM SERVICE (3) PM SERVICES CHECK TIRES FOR LEAKS CHECK PLOW BATT PM,TIRES, PLOW, BATT
DRIVING ISSUE (4) FAILURE TO YIELD RIGHT, OVE CORRECTING OVER STEERING OVE, STEERING
STOP SIGN RUNNING (4) MOTORISTS REGULARLY ILLEGAL U-TURNS IN R/HOUR U-TURNS, R/HOUR
BUILDING PM (5) THE A/C UNIT IN THE KITCHEN ON 3TH FLOOR DMG/LEAK A/C, DMG
ENG NEED REPAIR (3) CHANGE OIL & FILTER: L/H ENG, CHECK COMP & PLUGS OIL, ENG, L/H, COMP, PLUGS
PREVENTIVE MAINT (5) RESET BOILER #2 TMER, CHECKED BLDG. THROUGHOUT BOILER, BLDG

Table 2: Example instances of technical logbook entries spanning the aviation accident (1), aviation maintenance
(2), automotive maintenance (3), automotive safety (4), and facility maintenance (5). Each instance shows how
domain-specific terminology, abbreviations (Abbr.), and misspelled words (in bold font) are used by the domain
expert, and also illustrates some of the event types covered. More details are provided in Section 3.

notable performance by using the n-gram features
with the Maximum Entropy (MaxEnt) classifier.

There is also relevant research on event classi-
fication in social media. For example, Ritter et al.
(2012) proposed an open-source event extraction
and supervised tagger for noisy microblogs. Cherry
and Guo (2015) applied word embedding-based
modeling for information extraction on news-wire
and tweets, comparing named entity taggers to im-
prove their method. Hammar et al. (2018) per-
formed experimental work on Instagram text using
weakly supervised text classification to extracted
clothing brand based on user descriptions in posts.

The problem of class imbalance has been stud-
ied in recent years for numerous natural language
processing tasks. Tayyar Madabushi et al. (2019)
studied automatic propaganda event detection from
a news dataset using a pre-trained BERT model.
They recognized that the BERT model had issues
in generalizing. To overcome this issue, they pro-
posed a cost-weighting method. Al-Azani and El-
Alfy (2017) analyzed polarity measurement in im-
balanced tweet datasets utilizing features learned
with word embeddings. Li and Nenkova (2014)
studied the class imbalance problem in the task
of discourse relation identification by comparing
the accuracy of multiple classifiers. They showed
that utilizing a unified method and further down-
sampling the negative instances can significantly
enhance the performance of the prediction model
on unbalanced binary and multi-classes.

Dealing with unbalance classes is also studied
well in the sentiment classification task. Li et al.
(2012) introduced an active learning method that
overcomes the problem of data class unbalance by
choosing the significant sample of minority class

for manual annotation and majority class for au-
tomatic annotation to lower the amount of human
annotation required. Furthermore, Damaschk et al.
(2019) examined techniques to overcome the prob-
lem of dealing with high-class imbalance in classi-
fying a collection of song lyrics. They employed
neural network models including a multi-layer per-
ceptron and a Doc2Vec model in their experiments
where the finding was that undersampling the ma-
jority class can be a reasonable approach to remove
the data sparsity and further improve the classifica-
tion performance.

Li et al. (2020) also explored the problem of
high data imbalance using cross-entropy criteria
as well as standard performance metrics. They
proposed a loss function called Dice loss that as-
signs equal importance to the false negatives and
the false positives. In computer vision, Bowley
et al. (2019) developed an automated feedback loop
method to identify and classify wildlife species
from Unmanned Aerial Systems imagery, for train-
ing CNNs to overcome the unbalanced class issue.
On their expert imagery dataset, the error rate de-
creased substantially from 0.88 to 0.05. This work
adapts this feedback loop strategy to the NLP prob-
lem of classifying technical events.

3 Technical Event Datasets

In this work, we used a set of 7 logbook datasets
from the aviation, automotive, and facility domains
available at MaintNet (Akhbardeh et al., 2020a).
MaintNet is a collaborative open-source platform
for predictive maintenance language resources fea-
turing multiple technical logbook datasets and tools.
These datasets include: 1) Avi-Main contains seven
years of maintenance logbook reports collected by



Code Inst
Avg N Class Size
Toks Cls Min Med Avg Max

Avi-Main 6,169 13.85 39 21 56 158 1,674
Avi-Acc 4,130 14.31 5 179 966 826 1,595
Avi-Safe 17,718 19.52 2 2,134 8,859 8,859 15,584

Auto-Main 617 7.34 5 23 48 123 268
Auto-Acc 52,707 4.59 3 1,085 11,060 17,569 40,562
Auto-Safe 4,824 25.11 17 86 213 284 678

Faci-Main 74,360 31.50 70 25 303 1,062 10,748

Table 3: Number of instances (Inst), average number
of tokens per instance (Avg Toks), number of classes
(N Cls), and class size statistics: minimum, average,
median, and maximum (Min, Med, Avg, Max) for each
dataset.

the University of North Dakota aviation program
on aircraft maintenance that were reported by the
mechanic or pilot. 2) Avi-Acc contains four years
of aviation accident and reported damages. 3) Avi-
Safe contains eleven years of aviation safety and
incident reports. Accidents were caused by foreign
objects/birds during the flights which led to safety
inspection and maintenance, where safety crews
indicated the damage (safety) level for further anal-
ysis. 4) Auto-Main is a single year report with
maintenance records for cars. 5) Auto-Acc contains
twelve years of car accidents and crash reports de-
scribing the related car maintenance issue and prop-
erty damaged in the accident. 6) Auto-Safe contains
four years of noted hazards and incidents on the
roadway from the driver. 7) Faci-Main contains
six years of logbook reports collected for building
maintenance.

These technical logbooks include short, com-
pact, and descriptive domain-specific English texts
single instances usually contain between 2 and
20 tokens on average including abbreviations and
domain-specific words. An example instance from
Table 2, r/h fwd upper baff seal needs to be rese-
cured, shows how the instances for a specific issue
class are comprised from specific vocabulary (less
ambiguity), and therefore contain a high level of
granularity (level of description for an event from
multiple words) (Mulkar-Mehta et al., 2011). Ta-
ble 3 presents statistics for each dataset, in terms of
the number of instances, average instance length,
number of classes, and the minimum, average, me-
dian and maximum class size to represent how im-
balanced the datasets are.

An instance in the logbook can be formed as a
complete description of the technical event (such as

a safety or maintenance inspection) like: #2 & #4
cyl rocker cover gsk are leaking, or it might contain
an incomplete description by solely referring to
the damaged part/section of machinery (hyd cap
chck eng light on) using few domain words. In
either form of the problem description, the given
annotation (label) is at the issue type-level, e.g.,
baffle damage. Table 2 shows multiple examples
with associated instances.

Further characteristics of these log entries in-
clude compound words (antifreeze, engine-holder,
driftangle, dashboard). Many of these words (e.g.,
a compound word: dashboard) essentially repre-
sent the items, or domain-specific parts used in the
descriptions. Additionally, function words (e.g.,
prepositions) are important and removing them
could alter the meaning of the entry. The logbook
datasets also have both the following shared and
distinct characteristics:

Shared Characteristics: Each instance contains a
descriptive observation of the issue and/or the sug-
gested action that should be taken (eng inspection
panel missing screw). Each instance also refers to
maintaining a single event, which means the recog-
nized problem applies to the only single-issue type.
As an example, the instance cyl #1 baff cracked at
screw support & forward baff below #1 includes a
combination of sequences that refers to the location
and/or specific part of the machinery.

Distinct Characteristics: In each domain, termi-
nologies, a list of terms, and abbreviations are dis-
tinct, and an abbreviation can have different ex-
pansion depending on the domain context (Sproat
et al., 2001), e.g., a/c can mean aircraft in avia-
tion and in the automotive domain air conditioner.
However, the abbreviations and acronyms of the
domain words (e.g. atc - air traffic control) in these
technical datasets should not be approached as a
word sense disambiguation problem as they require
character level expansion.

4 Methods and Models

4.1 Handling Class Imbalance

Collecting additional data to augment datasets is
a common approach for tackling the problem of
skewed class distributions. However, as discussed
earlier, technical logbooks are proprietary and very
hard to obtain. In addition, each domain captures
domain-specific lexical semantics, preventing the
use of techniques such as domain adaption (Ma



Algorithm 1 Feedback Loop Pseudocode
. GetsMCS random instances from each class
function SAMPLERANDOM(C,MCS)

Array A
for i← 1 to SIZE(C) do

SHUFFLE(Ci)
A ← A∪ GETFIRSTN(MCS, Ci)

return A

. GetsMCS instances from each class with the worst error
function RESAMPLE(C,M,MCS)

Array A
for i← 1 to SIZE(C) do

CALCULATEERROR(Ci)
SORTBYERROR(Ci)
A ← A∪ GETFIRSTN(MCS, Ci)

return A

Input: Training Data D = Instance(1, 2, . . . , N )
Input: Feedback Loop Iterations FLI
Input: Epochs Per Loop Iteration FLE
Input: Minimum Class SizeMCS

. Divide training data by class
Array C ← SPLITBYCLASS(D)

. Get initial active training data A randomly
Array A ← SAMPLERANDOM(C,MCS)
ModelM
for l← 1 to FLI do

. Train the model for the number of epochs per iteration
M← TRAIN(M, FLE , A)
. Update the active training data
A ← RESAMPLE(D,M,MCS)

Output:M

et al., 2019) to apply a large class data from one
technical domain to another. For example, in-
stances that describe an engine failure in the avi-
ation domain are distinct from engine failure in-
stances reported in the automotive domain. In this
paper we apply five different methods for selecting
training data for the models to analyze their effects
on classification performance: (1) under(down)-
and (2) over-sampling, (3) random down-sampling,
(4) a feedback loop strategy, and (5) a baseline
strategy which simply uses all available data.

Re-sampling Under- and over-sampling are re-
sampling techniques (Maragoudakis et al., 2006)
that were used to create balanced class sizes for
model training. For over-sampling, instances of the
minority classes are randomly copied so that all
classes would have the same number of instances
as the largest class. For under-sampling, obser-
vations are randomly removed from the majority
classes, so that all classes have the same number
of instances as the smallest class. For both ap-
proaches, we first divided our datasets into test and

training sets before performing over-sampling to
prevent contamination of the test set by having the
same observations in both the training and test data.

Feedback Loop To address class imbalances in
text classification, this work adapts the approach
in Bowley et al. (2019) from the computer vision
domain. The goal of this approach is not only to
alleviate the bias towards majority classes but also
to adjust the training data instances such that the
models are always being trained on the instances
that was performing the worst on. It should be
noted that this approach is very similar to adaptive
learning strategies which have been shown to aid
in human learning (Kerr, 2015; Midgley, 2014).

Algorithm 1 presents pseudocode for the feed-
back loop. In this process, the active training data
(the data used to actually train the models in each
iteration of the loop) is continually resampled from
the training data. The model is first initially trained
with an undersampled number of random instances
from each class, which becomes the initial active
training data. The model M then performs infer-
ence over the entire training set, and then selects
MCS instances from each class Ci which had the
worst error during inference, where MCS is the
minority (smallest) class size. The model is then
retrained with this new active training data and the
process of training, inference and selection of the
MCS worst instances repeats for a fixed number
of feedback loop iterations, FLI. In this way the
model is always being trained on the instances it
has classified the worst.

To measure the effect of resampling the worst
performing instances, the feedback loop approach
was also compared to a random downsampling
(DS) loop, where instead of evaluating the model
over each instance and selecting the worst perform-
ing instances, MCS instances from each class
are instead randomly sampled. As performing
inference over the entire training set adds over-
head, a comparison to the random DS loop method
would show if performing this inference is worth
the performance cost over simple random resam-
pling. This approach is the same as Algorithm 1
except that SampleRandom is used instead of
Resample in the feedback loop. Section 4.3 de-
scribes how the number of training epochs and loop
iterations were determined such that all the training
data selection methods are given a fair evaluation
with the same amount of computational time.



Evaluation Metrics For imbalanced datasets,
simply using precision, recall or F1 score metrics
for the entire datasets would not accurately reflect
how well a model or method performs, as they em-
phasize the majority classes. To overcome this,
alternative evaluation metrics to handle the class
imbalance problem were used, as recommended
by Banerjee et al. (2019). Specifically, we report
the models performance based on precision, recall,
and F1 score by utilizing a macro-average over all
classes, as this gives every class equal weight, and
hence reveals how well the models and training
data selection strategies perform.

4.2 Model Architecture and Training
Different machine learning methods were consid-
ered for technical event/issue classification (e.g.
engine failure, turbine failure). Each instance is
an individual short logbook entry and contains ap-
proximately 2 to 20 tokens (12 words on average
per instance including function words), as shown
in Table 3.The methods used in this study were a
Deep Neural Network (DNN) (Dernoncourt et al.,
2017), a Long Short-Term Memory (LSTM) (Suz-
gun et al., 2019), recurrent neural network (RNN)
(Pascanu et al., 2013), a Convolutional Neural Net-
work (CNN) (Lin et al., 2018), and BERT (Devlin
et al., 2019).

Deep Neural Network A deep artificial neural
network (DNN), as described by Dernoncourt et al.
(2017), can learn abstract representation and fea-
tures of the input instances that would help to
achieve better performance on predicting the is-
sue type in the logbook dataset. The DNN used
was a 3 layer, fully connected feed forward neural
network with an input embedding layer of dimen-
sion 300 and equal size number of words followed
by 2 dense layers with 512 hidden units with ReLU
activation functions followed by a dropout layer.
Finally, we added a fully connected dense layer
with size equal to the number of classes, with a
SoftMax activation function.

Long Short-Term Memory An LSTM RNN
was also used to perform a sequence-to-label clas-
sification. As described by Suzgun et al. (2019)
LSTM RNNs utilize several vector gates at each
state to regulate the passing of data by the sequence
which enhances the modeling of the long-term de-
pendencies. We used a 3 layer LSTM model with
a word embedding layer of dimension 300 and the
equal size number of words followed by an LSTM

layer with setting the number of hidden units equal
to the embedding dimension, followed by a dropout
layer. Finally, we added a fully connected layer
with size equal to the number of classes, with a
SoftMax activation function.

Convolutional Neural Network Convolutional
neural networks (CNNs) have demonstrated excep-
tional success in NLP tasks such as document clas-
sification, language modeling, or machine trans-
lation (Lin et al., 2018). As Xu et al. (2020) de-
scribed, CNN models can produce consistent per-
formance when applied to the various text types
such as short sequences. We evaluated a CNN ar-
chitecture (Shen et al., 2018) with a convolutional
layer, followed by batch normalization, ReLU, and
a dropout layer, which was followed by a max-
pooling layer. The model contained 300 convolu-
tional filters with the size of 1 by n-gram length
pooling with the size of 1 by the length of the input
sequence, followed by concatenation layer, then
finally connected to a fully connected dense layer,
and an output layer equal to the size of the dataset
class using a SoftMax activation function.

Bidirectional Encoder Representations We
also evaluated using the pre-trained uncased Bidi-
rectional Encoder Representations (BERT) for En-
glish (Devlin et al., 2019). We fine-tuned the model,
and used a word piece based BERT tokenizer for
the tokenization process and the RandomSampler
and SequentialSampler for training and testing re-
spectively. To better optimize this model, a sched-
ule was created for the learning rate that decayed
linearly from the initial learning rate we set in the
optimizer to 0.

4.3 Experimental Settings
Datasets and Baselines First, the technical text
pre-processing pipeline developed by Akhbardeh
et al. (2020b) was applied, which comprises
domain-specific noise entity removal, dictionary-
based standardization, lexical normalization, part
of speech tagging, and domain-specific lemmatiza-
tion. We divided the datasets selecting randomly
from each class independently to maintain a similar
class size distribution, using 80% of the instances
for training and 20% of the instances for testing
data. For feature extraction, two methods were
considered: a bag-of-word model (n-grams:1) (Pe-
dregosa et al., 2011) and pre-trained 300 dimen-
sional GloVe word embeddings (Pennington et al.,
2014).



Hyperparameter and Tuning The coarse to
fine learning (CFL) approach (Lee et al., 2018)
was used to set parameters and hyperparameters
for the DNN, LSTM, and CNN models. Experi-
ments considered batch sizes of 32, 64, and 128,
an initial learning rate ranging from 0.01 to 0.001
with a learning decay rate of 0.9, and dropout regu-
larization in the range from 0.2 to 0.5 in all models,
as well as ReLU and SoftMax activation functions
(Nair and Hinton, 2010), categorical cross-entropy
(Zhang and Sabuncu, 2018) as the loss function,
and the Adam optimizer (Kingma and Ba, 2015) in
the DNN, LSTM, CNN and BERT models. Based
on experiments and network training accuracy, a
batch size of 64 and drop out regularization of 0.3
was selected for model training.

Each model with each training data selection
strategy was trained 20 times to generate results for
each dataset. To ensure each training data selection
strategy was fairly compared with a similar com-
putational budget, the number of training epochs
and loop iterations (if the strategy had a feedback
or random downsampling loop) were adjusted so
that the total number of training instances evalu-
ations each model performed was the same. For
each dataset, the number of forward and backward
passes, ‘T’ for 100 epochs of the baseline strategy
was used as the standard. As an example, Table 4
shows how many loop iterations, epochs per loop,
and inference passes were done for each training
data selection strategy on the Auto-Safe dataset.
Given the differences between the min and max
class sizes it was not possible to get exact matches
but the strategies came as close as possible. We
counted each inference pass for the feedback loop
the same as a forward and backward training pass,
which actually was a slight computational disad-
vantage for the feedback loop, as a forward and
backward pass in training takes approximately 1x
to 2x the time as an inference pass.

5 Results

Table 5 shows a comparison between the base-
line and the four different class balancing methods
(over-sampling, under-sampling, the random down-
sampling (DS) loop and the feedback loop). Based
on these outcomes, the feedback loop strategy al-
most entirely outperforms the other methods over
all datasets and models, showing that performing
inference over the training set and reselecting the
training data from the worst performing instances

Dataset L EPL LTI INM T

Baseline 1 100 3,859 0 385,900
Downsampling 1 329 1,173 0 385,917
Oversampling 1 42 9,214 0 386,988
Random DS Loop 33 10 1,173 0 387,090
Feedback Loop 25 10 1,173 3,859 389,725

Table 4: Details regarding different training process us-
ing the various methods for handling the unbalanced
class in automotive safety (Auto-Safe) dataset with 17
total classes. Loop (L), Epochs Per Loop (EPL), Active
Training instance Size (LTI), Inference for New Mis-
classified (INM) and Total Instances Evaluated (T).

does provide a benefit to the learning process. A
plausible explanation is that this strategy does not
introduce bias into the larger class and also does
not effect the minority class size distribution. It
also does not waste training time on instances the
model has already well learned.

Table 5 also shows the empirical analysis of the
four classification models, with the model and train-
ing data selection strategy providing the overall
best results shown in bold and italics. Using techni-
cal text pre-processing techniques described in Sec-
tion 4.3, and the feedback loop strategy described
in Section 4.1, the precision, recall, and F1 score
improved compared to the baseline performance.
The CNN model outperformed the other algorithms
with improved precision, recall, and F1 score for al-
most all datasets except for Avi-Main, where BERT
had the similar results, and Auto-Main where CNN
and BERT tied. This is interesting, given the cur-
rent popularity of the BERT model, however it may
be due to the substantial lexical, topical, and struc-
tural linguistic differences between the technical
logbook data and the English corpus that BERT
was pre-trained on.

Furthermore, we conducted the Mann-Whitney
U-test of statistical significance by using the F1
scores of each of the 20 repeated experiments of
the classification models, using the baseline and
the feedback loop approach as the two different
populations. The outcomes are shown in Table
6, with the differences being highly statistically
significant.

6 Discussion

To investigate the optimal strategies for dealing
with these imbalanced technical datasets, we stud-
ied various methods on how to process the data,
extract features, and classify the type of event. Re-



Down Over Random Feedback
Dataset Model Baseline (%) Sampling (%) Sampling (%) DS Loop (%) Loop (%)

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Avi-Main

DNN 0.90 0.89 0.89 0.67 0.78 0.70 0.90 0.90 0.90 0.90 0.90 0.90 0.93 0.91 0.91
LSTM 0.84 0.85 0.84 0.81 0.83 0.81 0.85 0.84 0.84 0.84 0.84 0.84 0.86 0.88 0.87
CNN 0.93 0.92 0.92 0.89 0.88 0.88 0.94 0.92 0.92 0.93 0.91 0.91 0.95 0.94 0.94
BERT 0.93 0.93 0.93 0.85 0.86 0.85 0.94 0.94 0.94 0.94 0.93 0.93 0.95 0.96 0.95

Avi-Acc

DNN 0.47 0.44 0.43 0.35 0.45 0.35 0.48 0.47 0.47 0.50 0.44 0.46 0.52 0.45 0.48
LSTM 0.38 0.37 0.37 0.35 0.35 0.35 0.39 0.39 0.39 0.38 0.39 0.38 0.40 0.39 0.39
CNN 0.50 0.49 0.49 0.43 0.42 0.42 0.52 0.44 0.47 0.51 0.44 0.47 0.52 0.46 0.48
BERT 0.48 0.42 0.44 0.41 0.40 0.40 0.50 0.44 0.46 0.50 0.44 0.46 0.51 0.45 0.47

Avi-Safe

DNN 0.43 0.41 0.41 0.36 0.36 0.36 0.50 0.50 0.50 0.50 0.49 0.49 0.53 0.51 0.51
LSTM 0.47 0.46 0.46 0.43 0.42 0.42 0.49 0.50 0.49 0.48 0.46 0.47 0.49 0.50 0.49
CNN 0.59 0.57 0.57 0.50 0.50 0.50 0.60 0.59 0.59 0.59 0.59 0.59 0.62 0.61 0.61
BERT 0.50 0.50 0.50 0.44 0.46 0.44 0.54 0.54 0.54 0.53 0.53 0.53 0.56 0.57 0.56

Auto-Main

DNN 0.58 0.45 0.49 0.33 0.49 0.39 0.60 0.55 0.56 0.58 0.54 0.55 0.61 0.55 0.57
LSTM 0.49 0.55 0.51 0.41 0.42 0.41 0.50 0.60 0.54 0.51 0.58 0.54 0.53 0.61 0.55
CNN 0.61 0.61 0.61 0.53 0.53 0.53 0.64 0.64 0.64 0.63 0.64 0.63 0.65 0.64 0.64
BERT 0.60 0.60 0.60 0.54 0.53 0.53 0.63 0.64 0.63 0.63 0.63 0.63 0.64 0.64 0.64

Auto-Acc

DNN 0.43 0.34 0.30 0.35 0.42 0.27 0.39 0.42 0.31 0.40 0.39 0.39 0.48 0.40 0.40
LSTM 0.45 0.39 0.41 0.40 0.40 0.40 0.42 0.41 0.41 0.42 0.40 0.40 0.48 0.41 0.44
CNN 0.46 0.43 0.44 0.44 0.41 0.42 0.49 0.50 0.49 0.50 0.51 0.50 0.51 0.53 0.52
BERT 0.50 0.49 0.49 0.47 0.47 0.47 0.50 0.50 0.50 0.51 0.49 0.50 0.52 0.51 0.51

Auto-Safe

DNN 0.52 0.46 0.48 0.40 0.47 0.41 0.54 0.51 0.51 0.54 0.51 0.51 0.55 0.52 0.53
LSTM 0.40 0.40 0.40 0.38 0.39 0.38 0.41 0.42 0.41 0.41 0.41 0.41 0.43 0.42 0.42
CNN 0.59 0.58 0.58 0.52 0.51 0.51 0.59 0.60 0.59 0.59 0.59 0.59 0.62 0.60 0.61
BERT 0.57 0.56 0.56 0.52 0.50 0.50 0.58 0.56 0.56 0.57 0.57 0.57 0.58 0.59 0.59

Faci-Main

DNN 0.57 0.48 0.50 0.33 0.40 0.34 0.56 0.48 0.50 0.57 0.50 0.53 0.59 0.51 0.54
LSTM 0.56 0.56 0.56 0.53 0.52 0.52 0.59 0.55 0.56 0.59 0.56 0.57 0.63 0.56 0.60
CNN 0.64 0.64 0.64 0.61 0.60 0.60 0.66 0.66 0.66 0.65 0.65 0.65 0.69 0.67 0.68
BERT 0.63 0.64 0.63 0.60 0.60 0.60 0.65 0.64 0.64 0.64 0.65 0.64 0.68 0.67 0.67

Table 5: Comparison of results for the 7 datasets, for the baseline and four methods to address class imbalance for
the four evaluated models (DNN, LSTM, CNN and BERT). Each model’s macro average performance is shown as
precision (Pre), recall (Rec) and F1 score. The best results over the training data selection strategies are shown in
bold, and the best results over all models are additionally in italics.

garding the discussion provided in Section 3 about
the nature of such a dataset, there are key chal-
lenges that effect the performance of employed
algorithms. As discussed in Section 1, the ex-
treme class imbalance observed in these technical
datasets substantially affects learning algorithms’
performance. To overcome this issue, we first ex-
plored oversampling and undersampling, which
both result in balanced class sizes. Undersampling
removed portions of dataset that could be impor-
tant for certain technical events or issues, which
resulted in underfitting and weak generalization
for important classes. On the other hand, over-
sampling may introduce overfitting in the minority

class, as some of the event types are very short to-
kens containing domain-specific words. Following
this, to minimize the possibility of overfitting and
underfitting, a random downsampling loop and a
feedback loop were investigated to minimize bias
in the training process. It was found that the added
computational cost of the feedback loop inference
was worth the reduction in training time it caused
over the random downsampling loop.

The scarce data available in a dataset such as
Auto-Main is certainly an issue for deep learning
methods. Examining the accuracy improvement by
using the proposed feedback loop strategy, requires
incorporating more instances to the event classes.



Similar to any supervised learning models, we no-
ticed some limitations that could be addressed in
future work. As shown in the previous sections
(such as Table 2), logbook instances contain short
text (ranging from 2 to 20 tokens per instance), and
utilizing recurrent deep learning algorithms such as
LSTM RNNs which are heavily based on the con-
text leads to weak performance compared to other
algorithms. One possible explanation is that log-
books with short instances (sequences) are not pro-
viding sufficient context for the algorithm to make
better predictions. Another could be that RNNs
are notoriously difficult to train (Pascanu et al.,
2013), and the LSTM models may simply require
more training time to achieve similar results. There
is some evidence for this, as the dataset with the
most instances, which also had the second largest
number of tokens per instance on average was Faci-
Main, which is the dataset which the LSTM model
had the closest performance to the CNN and BERT
models, and was also the only one which the LSTM
model outperformed the DNN model.

The pre-trained BERT model provided a reason-
able classification performance compared to the
other deep learning models, however as BERT is
pre-trained on standard language, the performance
when applying to logbook data was not optimal.
Training or fine-tunning BERT to technical logbook
data is likely to improve performance as observed
in the legal and scientific domains (Chalkidis et al.,
2020; Beltagy et al., 2019). As training or fine-
tuning BERT requires large amounts of data, a
limitation for fine-tuning a domain-specific BERT
is the amount of logbook data available.

7 Conclusion and Future Work

This work focused on predictive maintenance and
technical event/issue classification, with a special
focus on addressing class imbalance. We acquired
seven logbook datasets from three technical do-
mains containing short instances with non-standard
grammar and spelling, and many abbreviations.
To address RQ1, we evaluated multiple strategies
to address the extreme class imbalance in these
datasets and we showed that the feedback loop
strategy performs best, almost entirely providing
the best results for the 7 different datasets and 4
different models investigated. To address RQ2, we
empirically compared different classification algo-
rithms (DNN, LSTM, CNN, and pre-tuned BERT).
Results show that the CNN model outperforms the

Dataset DNN LSTM CNN BERT

Avi-Main 0.0020 0.0043 0.0002 0.0004

Avi-Acc 0.0011 0.0399 0.0103 0.0015

Avi-Safe 0.0000 0.0023 0.0059 0.0012

Auto-Main 0.0001 0.0181 0.0009 0.0004

Auto-Acc 0.0000 0.0055 0.0001 0.0161

Auto-Safe 0.0003 0.0106 0.0011 0.0083

Faci-Main 0.0002 0.0001 0.0003 0.0005

Table 6: Statistical significance of the various clas-
sification models between the Baseline approach and
Feedback Loop approach F1 scores using the Mann-
Whitney U test. Experiments indicate statistical signif-
icance with a p value of 0.05.

other classifiers. The methodology presented in
this paper could be applied to other maintenance
corpora from a variety of technical domains. The
feedback loop approach for selecting training data
is generic and could easily be applied to any learn-
ing problem with substantial class imbalances. This
is useful as extreme class imbalance is a challenge
at the heart of a number of natural language tasks.

In future work, we would like to fine-tune BERT
using logbook data, as described in Section 6, and
extend this work to datasets in other languages.
The biggest challenge for these two research direc-
tions is the limited availability of logbook datasets.
Furthermore, we are exploring various methods of
domain adaptation and transfer learning on these
datasets to further improve the performance of clas-
sification models.
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