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What is Wildlife@Home?

• A citizen science project that combines both crowd 
sourcing and volunteer computing.

• Users volunteer their brain power by observing 
videos and reporting observations.

• Users volunteer their computer power by 
downloading videos and performing.

• A scientific web portal to robustly analyze and 
compare results from users, experts and the 
computer vision techniques.



Between 2012 and now, Dr. Ellis-Felege has gathered over 
85,000 hours of avian nesting video from the following species: 

1. Sharp-tailed grouse (Tympanuchus phasianellus), an 
important game bird and wildlife health indicator species.

2. Piping plovers (Charadrius melodus), a federally listed 
threatened species.

3. Interior least terns (Sternula antillarum), a federally listed 
endangered species.

A recent collaboration with Ducks Unlimited added another 
15,000 hours of Blue Winged Teal (Anas discors) nesting video.

We have also recently received over 2 million motion sensor 
camera images and ~100,000 aerial images taken by UAVs 
from a new Hudson Bay project.



The three species (Grouse, Plover and Tern) investigated in this work are ground 
nesting birds.

Sharp-tailed grouse nest in the dense grass (top left). Nests were monitored in areas of 
high oil development, moderate oil development and no oil development (protected 
state land).

Piping plover and interior least tern are shore nesting species (top right). Nests were 
monitored along the Missouri River in North Dakota.

Sharp-tailed Grouse Piping Plover



Most grouse video is sleeping birds and grass blowing in the wind.  
But occasionally, interesting things happen.



Piping plover and tern video is more interesting, with active bi-
parental involvement and less obscuring vegetation.



There are many challenges:

1. Dramatically changing weather conditions
2. Dawn/Day/Dusk/Night lighting conditions
3. Model species (sharp tailed grouse and piping plover) and some predators have 

cryptic coloration (camouflage).
4. Moving vegetation and insects can cause false negatives.
5. Lower quality video due to limitations on cameras.

Figure 2: A piping plover at its nest in high to low light conditions (top), and a sharp-tailed grouse in day,
dusk and night conditions (bottom). Birds are circled in red. Given the cryptic coloration of the bird and
lighting conditions, it can be very difficult to distinguish the bird from a rock, grass or some other object.

nest defense and predation will also need to be detected, from potentially unknown predators. For example,
in previous work by Dr. Ellis-Felege, on two occasions deer were discovered eating eggs from northern
bobwhite (Colinus virginianus) nests [57]. These events of interest must also be differentiated from other
animal activity such as insects and spiders on the camera screen (see Figure 3).

Algorithms capable of detecting events within this type of video will most likely have high computa-
tional demands. Further, we expect to gather about 40,000 hours of video per bird species each nesting
season. In order to accurately train and utilize computer vision algorithms for the analysis of that video,
significant human guidance and observation will be required, in addition to massive amounts of computer
power.

Harnessing Citizen Science Volunteer computing, where people volunteer their computers to differ-
ent computing projects, has emerged as a viable and significant source of computing power being suc-
cessfully used to perform research in scientific applications ranging from astronomy [28, 30, 51], biol-
ogy [48, 102, 94, 12], chemistry [70], and physics [110, 87], to climate modeling [25] as well as many other
fields of enquiry. Berkeley’s Open Infrastructure for Network Computing (BOINC) [6, 7] is the most widely
deployed volunteer computing framework, in part due to its open source code and easy extension. As of
April 2012, over 460,000 volunteered computers are participating in BOINC and contributing over 6.175
petaFLOPS (1015 floating point operations) per second of computing power [16], more powerful than the
world’s second fastest supercomputer [54, 16].

On the other hand, crowd sourcing, where people volunteer their brain power, has been successfully
used by citizen science projects to tackle problems requiring human feedback. GalaxyZoo [86, 85] has had
great success in using volunteers to classify galaxies in images from the Sloan Digital Sky Survey [3]; and
PlanetHunters [63] has been used to identify planet candidates in the NASA Kepler public release data.
However, these focus on volunteers doing identification and classification of images, not video.
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We have been information about the video through a crowd sourcing 
interface, and a similar interface used by research assistants in biology.



Background Subtraction 
Methods



Mixture of Gaussians

MOG describes the probability of a pixel belonging to the background as a 
sum of Gaussians:

Where P(k) is the probability of the surface k appearing in the pixel view, and 
fX|k is the Gaussian distribution for surface k with Phi being the set of theta 
input parameters for the Gaussian distributions describing each feature.

P(k), uk, and thetak can be estimated with running averages calculated at each 
frame, and fX|k can be estimated by a boolean value which is true for a pixel 
value if it is within 2.5 standard deviations of the mean.

fX(X|�) =
KX

k=1

P (k) · fX|k(X|k, ✓k)



ViBe

Vibe stores the history of 20 previous pixel values, and compares new values 
to this pixel history.

If a pixel is within some threshold of any pixel within this stored model, it is 
classified as background.

The background model is updated stochastically, with each new pixel value 
having a 1/16 chance to replace one of the 20 stored pixel values selected at 
random.  If a replacement is done, there is an additional 1/16 chance of also 
updating one randomly selected neighborhood pixel's previous values.



Pixel-Based Adaptive Segmentation (PBAS) 

PBAS is an extended version of ViBe which adjusts the threshold for selecting 
a pixel as background dynamically. 

This is done using another set of 20 values, however in this case these are the 
minimal decision distance (minimum distance between an updated pixel and 
the previous 20 pixels).  The average of these 20 minimum decision values is 
used to calculate the threshold, R(xi), which increases/decreases by a user 
defined scale whenever it is above or below that average.



Motion Detection for Avian Nesting Video

ViBe and PBAS were modified and compared to MOG for this work:

1. They were made 2nd frame ready - the initial 20 previous pixels were 
selected at random from the first image.

2. An open/close filter was added to reduce foreground detection noise.  
This essentially smoothes the image, aiding in the reduction of video 
artifacts.

3. The convex hull of any connected foreground features used as foreground 
mask.  This increases the selected foreground area, as in many cases the 
head and other parts of the bird are foreground while the rest of the bird 
matches the background too well due to cryptic coloration.



Motion Detection for Avian Nesting Video

With these additions, the foreground mask needed to be converted to a 
measure of the probability of an event of interest occurring.

The count of foreground pixels is used as a time series of data points, which 
is smoothed by an exponential moving average:

mt = ↵ · xt + (1� ↵) ·mt�1

Where mt is the mean at time unit t, xt is the number of foreground pixels at 
time t, and alpha is the learning rate.

If at any time, xt is greater than the three standard deviations from the time 
series mean, mt, then that frame is flagged as having an event.



Motion Detection for Avian Nesting Video

This can then be used to generate time series which can be compared to 
crowd sourced and expert video observations:



Results



Experiments

MOG, as well as our modified ViBe and PBAS were run over 105 tern and 
plover videos (77.05 total hours), and 109 sharptailed grouse videos (205.39 
total hours).

Video lengths range from 30 minutes to 2 hours, and each algorithm ran at 
~10 frames per second.

Results were gathered using a Mac Pro with 12 logical cores, and took 
approximately 48 hours.



Detecting Interesting Events

The above shows two time series of detected foreground pixels.  Red arrows 
at the bottom show the beginning and end of scientist observed events.

The algorithms were described as correctly detecting an event if it fell 
between the start and end time of a user observed event.



Detecting Interesting Events

(a) Sample I (b) Sample II

Fig. 5. Example of event and foreground pixel count correlation. Red arrows indicate a scientist observed event and lines indicate foreground pixel count for
each algorithm.

TABLE II
ALGORITHM ACCURACY VS CITIZEN SCIENTISTS ON TERN AND

PLOVER NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 82 79 79 79
Nest Exchange 4 2 2 4
Adult-to-Adult Feed 14 14 14 14
Non-Predator Animal 16 16 14 14
Unspecified 10 10 10 10
On Nest 140 138 112 112
Off Nest 146 144 143 143

TABLE III
ALGORITHM ACCURACY VS EXPERT SCIENTISTS ON GROUSE

NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 284 274 258 270
Eggshell Removal 6 4 5 5
In Video 130 128 129 129
Predator 6 5 5 5
Unspecified 2 2 2 2
Attack 2 2 2 2
Physical Inspection 60 52 56 56
Observation 44 41 39 41
On Nest 216 196 174 178
Off Nest 492 470 439 461

TABLE IV
ALGORITHM ACCURACY VS CITIZEN SCIENTISTS ON GROUSE

NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 308 298 261 274
Nest Defense 2 2 2 2
Predator 14 12 10 12
Non-Predator Animal 2 2 1 2
Unspecified 2 0 2 2
Attack 22 18 20 21
Physical Inspection 46 46 45 46
Observation 8 7 7 8
On Nest 340 317 249 253
Off Nest 588 576 506 532

TABLE VI
ALGORITHM FALSE POSITIVES VS EXPERT SCIENTISTS

MOG ViBe PBAS

Species µ � µ � µ �

Grouse 139.67 144.76 74.31 95.92 73.83 100.64
Tern 5.78 35.37 2.76 15.86 1.58 6.89
Plover 4 7.63 0.50 1.07 0.63 1.41

environments are highly similar, and both species are being
observed for the same set of events. The Event Count column
shows the total number of each event that occurred in the set
of videos analyzed, and the following columns present how
many of those events the background subtraction algorithm
found.

Any background subtraction detected events that occur
within 30 seconds of the start or end time of a scientist
observed event are marked as a match. Multiple matches to the
same start and end event from the same scientist are ignored.
Since all three algorithms are adaptive, learning takes place in
each algorithm where it will begin to ignore bird presence and
absence on the nest. Event start and end times that take place
within the first 10 seconds of the beginning of the videos were
ignored as the algorithms did not have time to learn an initial
background yet.

Table V compares results from combining all three back-
ground subtraction algorithms. The Any Alg column shows the
number of events that matched any one of the three algorithms,
and the All Alg column shows the number of events that
matched all three algorithms. Using events marked by any
algorithm provided a small increase in events detected over
PBAS for all event types, however using a consensus showed
a dramatic decrease in the number of events found. This
decrease is indicative that the three different algorithms are
not finding overly similar areas of activity within the videos.

B. Analysis of False Positives

Tables VI and VII provide an analysis of false positives
generated by the background subtraction algorithms. False

(a) Timeline I (b) Timeline II

Fig. 4. Timelines showing the number of false positives in a windy grouse video (4a) against those in a less windy grouse video (4b). The highlighted
regions show time segments from the background subtraction results where there is no bird on the nest. These timelines were created using the Google Charts
API [16] and are easily embedded in the Wildlife@Home user interface.

used in the future to detect extreme lighting changes since this
will also emphasize large scene changes.

The conversion from the foreground mask to calculated
events is done with time-series analysis. An event is defined
as a specified video segment marked with a start and an
end time. Foreground pixel counts are taken as a series of
data points, and these are smoothed by using an exponential
moving average. This further reduces detection noise and
sporadic peaks. Once the data is smoothed its mean (µ) and
standard deviation (�) are calculated and used to determine
which frames have more than 3� foreground pixels using the
inequality in Equation 5. If this is the case, it is marked as
a significant event, otherwise it is ignored. Experimentation
can be done to determine a good threshold for the standard
deviation.

The equation for the exponential moving average is:

mt = ↵ · xt + (1� ↵) ·mt�1 (4)

where mt is the mean at time unit t, xt is the number of
foreground pixels at time t, and ↵ is the weighted decrease
or learning rate. As ↵ ! 1 the new data is more heavily
weighted. An example this time-series data compared to when
scientist marked events occurred can be seen in Figure 5.

The calculation of significant foreground events is done
using the following threshold inequality:

xt > µ+ 3� (5)

This threshold is a good indication of foreground activity
even when the video has a moderate amount of noise since
noisy regions are either smoothed or taken into consideration
in the time-series mean. The calculated foreground activity
can then be compared to scientists to determine algorithm
accuracy, as shown in Figure 4. By calculating events from
regions with an abnormal amount of foreground pixels, a
measure for the amount of foreground activity taking place
is provided. This activity can then be compared to scientists
to determine the accuracy of each background subtraction
algorithm as shown in Figures 4 and 5.

An example of the correlation between background subtrac-
tion events and scientist observed events can be see in Figure 5.

TABLE I
ALGORITHM ACCURACY VS EXPERT SCIENTISTS ON TERN AND

PLOVER NESTS

Event Type Event Count MOG ViBe PBAS

Preen 180 170 138 147
Scratch 4 4 2 2
Not In Video 732 632 578 607
Nest Exchange 22 16 16 16
Foraging 82 71 52 56
Adult-to-Adult Feed 20 6 6 6
Nest Defense 4 4 4 4
Predator 12 10 7 9
Non-Predator Animal 22 16 15 15
Unspecified 350 93 66 78
On Nest 932 665 582 608
Off Nest 2312 1960 1775 1876

The arrows indicate human observed events in comparison
with the time-series for each of the three algorithms. The data
in these two examples are highly correlated with little noise
and very few false detections. It can also be observed that
PBAS is very quick to adapt to changes while ViBe has the
largest detection emphasis among the three algorithms.

IV. RESULTS

The three background subtraction algorithms were run
against a set of 105 tern and plover videos and 109 grouse
videos. The plover and tern video totals 77.05 hours, and
the grouse video totals 205.39 hours. Video lengths range
anywhere from 30 minutes to 2 hours in length. Each algorithm
runs at more than 10 frames per second (the recording frame
rate) on a hyperthreaded 3.5 GHz core and is considered
capable of real-time processing. Results were collected using
a Mac Pro and 12 logical cores, which took approximately 48
hours. They were compared to observations made by project
expert scientists and volunteer citizen scientists to determine
algorithm accuracy.

A. Detecting Events with Background Subtraction

Tables I, III, II, and IV present how well each algorithm
matched up to project scientists and volunteers for sharptailed
grouse, and piping plover and least tern combined. Piping
plover and least tern results were combined as the birds and

The above charts show how well each algorithm matched up to events 
classified by project scientists (the paper also includes comparisons to our 
citizen scientists).  All the algorithms performed well detecting events, with 
MOG detecting the most.



Detecting Interesting Events

The above chart shows results for combining the different algorithms.  Having 
a consensus from multiple algorithms tended to lower event detection.

TABLE V
ALGORITHM ACCURACY WITH CONSENSUS VS EXPERT SCIENTISTS ON TERN AND PLOVER NESTS

Event Type Event Count Any Alg All Alg MOG & ViBe MOG & PBAS ViBe & PBAS

Preen 180 174 137 138 143 137
Scratch 4 4 2 2 2 2
Not In Video 732 635 576 576 606 576
Nest Exchange 22 16 16 16 16 16
Foraging 82 73 51 52 54 51
Adult-to-Adult Feed 20 6 6 6 6 6
Human 2 0 0 0 0 0
Nest Defense 4 4 4 4 4 4
Predator 12 11 6 6 8 7
Non-Predator Animal 22 19 12 12 14 13
Unspecified 350 94 66 66 77 66
On Nest 932 669 572 580 606 572
Off Nest 2312 1974 1763 1769 1868 1763

TABLE VII
ALGORITHM FALSE POSITIVES VS CITIZEN SCIENTISTS

MOG ViBe PBAS

Species µ � µ � µ �

Grouse 118.27 136.17 53.14 74.65 53.90 82.10
Tern 0.41 1.74 0.22 0.80 0.15 0.46

positives were counted by the number of computer classified
events that occur during a user classified Not In Video event.
Results are reported as the mean (µ) and standard deviation
(�) of false positives during any Not in Video event by any
scientist over all videos tested for that species. Videos without
a Not In Video event were ignored to prevent padding the
results. A 10 second buffer is used after the start and before
the end of the Not In Video events to avoid counting edge case
movement as a false positive. This was used as a measure
for false positives since at any other time a detection may
correspond to an unmarked event, such as motion from the
bird on the nest.

C. Effectiveness of Background Subtraction

The initial background subtraction results in Tables I, II, III,
and IV show that background subtraction is accurate enough to
be a reliable detection method for this type of video. Especially
in the case of the Not In Video, On Nest, and Off Nest events,
the detection accuracy is high enough to be useful for decision
making. The other event sample sizes are still too small,
requiring more results to be collected. MOG has the highest
accuracy on both the tern and plover video however we also
see the highest false postive rates from MOG across all species
types. Due to MOG’s high rate of false positives, PBAS is
likely the best overall performing algorithm due to its low
false positive rate and high accuracy. Utilizing results from
any algorithm (Table V) shows a slight improvement over in
performance over any individual algorithm. We also see than
PBAS has a low number of false positives on the tern and
plover observations (Tables VI and VII).

The Sharptailed Grouse have the highest average number
of false positives (Tables VI and VII) and by far the highest

standard deviation of false positives. The high variance in
the grouse results suggest that some videos may have a
low number of false positives, presumably indicating better
precision on less windy videos. This also indicates that the
high accuracy on the grouse videos (Tables III and IV) may
not solely be false positives due to moving foliage.

Another major cause for algorithm inaccuracy and large
variance in false positives (especially in the Least Tern sam-
ples) is from camera lighting autocorrection discussed in
Section III and seen in Figure 6. Changes in scenery brightness
from transitions in time of day or significant overhead cloud
movement cause the camera to adjust brightness and can cause
large scale false foreground detection. If the camera rapidly
and repeatedly changes the brightness we see regions of video
that the foreground algorithms cannot adapt to as shown in
Figure 6. Due to the nature of PBAS, it adjusts to the rapid
brightness changes but this still causes false negatives if a
scientist observed event does occur during or shortly after the
brightness adjustments.

Other detection errors are caused by video compression
noise, and species cryptic coloration. The original archival
Wildlife@Home videos taken by the field cameras are com-
pressed by the hardware in part due to storage reasons. With
these background subtraction algorithms working on moderate
to heavy compression, false positives are caused during transi-
tions between intra coded frames. More sensitive events such
as preens and scratches can be difficult to detect due to the
small amount of motion involved (typically just body rotation
and head movement) given the camera distance, along with the
cryptic coloration of the species. With the surrounding area
taking on such a similar color to the bird a simple preen or
scratch may easily go undetected by a background subtraction
algorithm.

It is also worth noting that many detected events may not
line up with the start or end time of a scientist observation but
may still be a cause of bird motion. For example in Figure 4b,
no events occur while the bird is off the nest but we see
sporadic events while it is on the nest, this could be caused by
bird adjustment on the nest or unmarked bird grooming events.
The frequency of events occurring during a video may also



Analysis of False Positives

TABLE V
ALGORITHM ACCURACY WITH CONSENSUS VS EXPERT SCIENTISTS ON TERN AND PLOVER NESTS

Event Type Event Count Any Alg All Alg MOG & ViBe MOG & PBAS ViBe & PBAS

Preen 180 174 137 138 143 137
Scratch 4 4 2 2 2 2
Not In Video 732 635 576 576 606 576
Nest Exchange 22 16 16 16 16 16
Foraging 82 73 51 52 54 51
Adult-to-Adult Feed 20 6 6 6 6 6
Human 2 0 0 0 0 0
Nest Defense 4 4 4 4 4 4
Predator 12 11 6 6 8 7
Non-Predator Animal 22 19 12 12 14 13
Unspecified 350 94 66 66 77 66
On Nest 932 669 572 580 606 572
Off Nest 2312 1974 1763 1769 1868 1763

TABLE VII
ALGORITHM FALSE POSITIVES VS CITIZEN SCIENTISTS

MOG ViBe PBAS

Species µ � µ � µ �

Grouse 118.27 136.17 53.14 74.65 53.90 82.10
Tern 0.41 1.74 0.22 0.80 0.15 0.46

positives were counted by the number of computer classified
events that occur during a user classified Not In Video event.
Results are reported as the mean (µ) and standard deviation
(�) of false positives during any Not in Video event by any
scientist over all videos tested for that species. Videos without
a Not In Video event were ignored to prevent padding the
results. A 10 second buffer is used after the start and before
the end of the Not In Video events to avoid counting edge case
movement as a false positive. This was used as a measure
for false positives since at any other time a detection may
correspond to an unmarked event, such as motion from the
bird on the nest.

C. Effectiveness of Background Subtraction

The initial background subtraction results in Tables I, II, III,
and IV show that background subtraction is accurate enough to
be a reliable detection method for this type of video. Especially
in the case of the Not In Video, On Nest, and Off Nest events,
the detection accuracy is high enough to be useful for decision
making. The other event sample sizes are still too small,
requiring more results to be collected. MOG has the highest
accuracy on both the tern and plover video however we also
see the highest false postive rates from MOG across all species
types. Due to MOG’s high rate of false positives, PBAS is
likely the best overall performing algorithm due to its low
false positive rate and high accuracy. Utilizing results from
any algorithm (Table V) shows a slight improvement over in
performance over any individual algorithm. We also see than
PBAS has a low number of false positives on the tern and
plover observations (Tables VI and VII).

The Sharptailed Grouse have the highest average number
of false positives (Tables VI and VII) and by far the highest

standard deviation of false positives. The high variance in
the grouse results suggest that some videos may have a
low number of false positives, presumably indicating better
precision on less windy videos. This also indicates that the
high accuracy on the grouse videos (Tables III and IV) may
not solely be false positives due to moving foliage.

Another major cause for algorithm inaccuracy and large
variance in false positives (especially in the Least Tern sam-
ples) is from camera lighting autocorrection discussed in
Section III and seen in Figure 6. Changes in scenery brightness
from transitions in time of day or significant overhead cloud
movement cause the camera to adjust brightness and can cause
large scale false foreground detection. If the camera rapidly
and repeatedly changes the brightness we see regions of video
that the foreground algorithms cannot adapt to as shown in
Figure 6. Due to the nature of PBAS, it adjusts to the rapid
brightness changes but this still causes false negatives if a
scientist observed event does occur during or shortly after the
brightness adjustments.

Other detection errors are caused by video compression
noise, and species cryptic coloration. The original archival
Wildlife@Home videos taken by the field cameras are com-
pressed by the hardware in part due to storage reasons. With
these background subtraction algorithms working on moderate
to heavy compression, false positives are caused during transi-
tions between intra coded frames. More sensitive events such
as preens and scratches can be difficult to detect due to the
small amount of motion involved (typically just body rotation
and head movement) given the camera distance, along with the
cryptic coloration of the species. With the surrounding area
taking on such a similar color to the bird a simple preen or
scratch may easily go undetected by a background subtraction
algorithm.

It is also worth noting that many detected events may not
line up with the start or end time of a scientist observation but
may still be a cause of bird motion. For example in Figure 4b,
no events occur while the bird is off the nest but we see
sporadic events while it is on the nest, this could be caused by
bird adjustment on the nest or unmarked bird grooming events.
The frequency of events occurring during a video may also

(a) Sample I (b) Sample II

Fig. 5. Example of event and foreground pixel count correlation. Red arrows indicate a scientist observed event and lines indicate foreground pixel count for
each algorithm.

TABLE II
ALGORITHM ACCURACY VS CITIZEN SCIENTISTS ON TERN AND

PLOVER NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 82 79 79 79
Nest Exchange 4 2 2 4
Adult-to-Adult Feed 14 14 14 14
Non-Predator Animal 16 16 14 14
Unspecified 10 10 10 10
On Nest 140 138 112 112
Off Nest 146 144 143 143

TABLE III
ALGORITHM ACCURACY VS EXPERT SCIENTISTS ON GROUSE

NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 284 274 258 270
Eggshell Removal 6 4 5 5
In Video 130 128 129 129
Predator 6 5 5 5
Unspecified 2 2 2 2
Attack 2 2 2 2
Physical Inspection 60 52 56 56
Observation 44 41 39 41
On Nest 216 196 174 178
Off Nest 492 470 439 461

TABLE IV
ALGORITHM ACCURACY VS CITIZEN SCIENTISTS ON GROUSE

NESTS

Event Type Event Count MOG ViBe PBAS

Not In Video 308 298 261 274
Nest Defense 2 2 2 2
Predator 14 12 10 12
Non-Predator Animal 2 2 1 2
Unspecified 2 0 2 2
Attack 22 18 20 21
Physical Inspection 46 46 45 46
Observation 8 7 7 8
On Nest 340 317 249 253
Off Nest 588 576 506 532

TABLE VI
ALGORITHM FALSE POSITIVES VS EXPERT SCIENTISTS

MOG ViBe PBAS

Species µ � µ � µ �

Grouse 139.67 144.76 74.31 95.92 73.83 100.64
Tern 5.78 35.37 2.76 15.86 1.58 6.89
Plover 4 7.63 0.50 1.07 0.63 1.41

environments are highly similar, and both species are being
observed for the same set of events. The Event Count column
shows the total number of each event that occurred in the set
of videos analyzed, and the following columns present how
many of those events the background subtraction algorithm
found.

Any background subtraction detected events that occur
within 30 seconds of the start or end time of a scientist
observed event are marked as a match. Multiple matches to the
same start and end event from the same scientist are ignored.
Since all three algorithms are adaptive, learning takes place in
each algorithm where it will begin to ignore bird presence and
absence on the nest. Event start and end times that take place
within the first 10 seconds of the beginning of the videos were
ignored as the algorithms did not have time to learn an initial
background yet.

Table V compares results from combining all three back-
ground subtraction algorithms. The Any Alg column shows the
number of events that matched any one of the three algorithms,
and the All Alg column shows the number of events that
matched all three algorithms. Using events marked by any
algorithm provided a small increase in events detected over
PBAS for all event types, however using a consensus showed
a dramatic decrease in the number of events found. This
decrease is indicative that the three different algorithms are
not finding overly similar areas of activity within the videos.

B. Analysis of False Positives

Tables VI and VII provide an analysis of false positives
generated by the background subtraction algorithms. False

An analysis of false positives was provided. A false positive was measured as the 
number of events classified during a user classified Not In Video event.

The grouse video, which has significant amounts of high wind and moving vegetation 
had far more false positives (as to be expected).  On the other hand it also had a very 
high standard deviation - suggesting that for videos without high wind and moving 
vegetation the background subtraction performed well.

Plover and Tern video had significantly less false positives, however the standard 
deviation was high, suggesting that for some videos (high wind or light fluctuations) 
these algorithms performed poorly.

While MOG detected the most events, it also had significantly more false positives.



Effectiveness of Background Subtraction

The modified PBAS and ViBe both performed well in detecting events, while MOG had 
rates of false positives that were too high to be effective.

While PBAS and  ViBe were highly effective for a large number of video, there still 
remains a challenging subset of video with high wind and/or frequent lighting changes 
which will require more advanced techniques.



We have used Wildlife@Home's volunteered computers to run the motion detection 
methods over all the collected video.  Results have been incorporated as a timeline into 
the user interface.  Users can click on the timeline to skip ahead to areas of interest.

What's Next?



What's Next?

The motion detection methods used, especially ViBe and PBAS 
work well on "easy" segments of the video.

New methods need to be developed to handle the challenging 
sections of video with rapidly changing light conditions and/or windy 
rapidly moving vegetation. Potential ideas: convolutional neural 
networks, Retinex to normalize brightness.

Expanding crowd sourcing to imagery from UAVs and motion 
sensing cameras taken in North Dakota and the Hudson Bay, 
Canada.



Reproducibility

All the videos and observations used in this work have been made 
available in the first Wildlife@Home data release:

http://csgrid.org/csg/wildlife/data_releases.php

And all Wildlife@Home source code is freely available on GitHub:

https://github.com/travisdesell/wildlife_at_home

http://csgrid.org/csg/wildlife/data_releases.php
https://github.com/travisdesell/wildlife_at_home
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SEED Grant.

North Dakota Game and Fish has provided financial support for 
field logistics to collect sharp-tailed grouse videos.

The US Geological Survey has provided financial support for 
camera equipment, video storage, and field assistance to collect 
data for the piping plover and interior least tern.

And of course all our volunteers.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1319700&HistoricalAwards=false
http://www.nsf.gov/div/index.jsp?div=IIS
http://crc.und.edu/
http://www.aero.und.edu/about/SCC.aspx


Thanks!

Questions?

http://people.cs.und.edu/~tdesell/

http://csgrid.org

tdesell@cs.und.edu

http://www.cs.rpi.edu/~deselt/
http://csgrid.org
mailto:deselt@cs.rpi.edu

