
Using LSTM Recurrent Neural
Networks to Predict Excess

Vibration Events in Aircraft Engines
AbdElRahman ElSaid∗, Brandon Wild†, James Higgins†,

Travis Desell∗
 

Department of Computer Science∗, Department of Aviation†
University of North Dakota

Motivation: General Aviation Safety

General aviation comprises 63% of all civil aviation activity in the
United States; covering operation of all non-scheduled and non-
military aircraft [2, 4].

While general aviation is a valuable and lucrative industry, it has the
highest accident rates within civil aviation [3].

For many years, the general aviation accident and fatality rates have
hovered around 7 and 1.3 per 100,000 flight hours, respectively [1].

1. B. Elias. Securing general aviation. DIANE Publishing, 2009.
2. K. I. Shetty. Current and historical trends in general aviation in the United States. PhD thesis, Massachusetts Institute of

Technology Cambridge, MA 02139 USA, 2012.
3. National Transportation Safety Board (NTSB), 2012. https://www.ntsb.gov/safety/mwl5_2012.html
4. Aircraft Owners and Pilots Association(AOPA), January 2014. http://www.aopa.org/About-AOPA/Statistical-Reference-Guide/

General-Aviation-Safety-Record-Current-and-Historic.aspx

http://www.aopa.org/About-AOPA/Statistical-Reference-Guide/General-Aviation-Safety-Record-Current-and-Historic.aspx
http://www.aopa.org/About-AOPA/Statistical-Reference-Guide/General-Aviation-Safety-Record-Current-and-Historic.aspx

Motivation: The National General
Aviation Flight Database
The National General Aviation Flight Information Database
(NGAFID) has been developed at the University of North Dakota
as a central repository for general aviation flight data. It
consists of per-second flight data recorder (FDR) data from
three fleets of aircraft.
As of June 2016, the database stores FDR readings from over
300,00 flights, consisting of over 550,000 flight hours with more
being added daily. It currently stores over 1.2 billion per-second
records of flight data (~2TB). The NGAFID provides an
invaluable source of information about general aviation flights,
as most of these flights are from aviation students, where there
is a wider variance in flight parameters than what may normally
be expected within data from professionally piloted flights.

Motivation: The National General
Aviation Flight Database

Time series flight data for this work was
gathered from the NGAFID, and this has
been made available publicly for other
interested researchers:

http://people.cs.und.edu/~tdesell/
ngafid_releases.php

http://people.cs.und.edu/~tdesell/ngafid_releases.php
http://people.cs.und.edu/~tdesell/ngafid_releases.php

Motivation: Flight Data Prediction

Having the ability to predict flight parameters based on
multiple other parameters as input is a first step towards
developing sensors which can intelligently detect
anomalous behavior or predict accident precursor
behavior. Bringing machine learning strategies into flight
data analysis and accident prediction has great potential
for preventing future accidents in a proactive manner.

Further, these same strategies can be used to predict and
prevent hardware failures or suggest pre-emptive
maintenance, reducing costs for airlines.

Motivation: Flight Data Prediction

Various parameters contribute to engine vibration:
•engine design
•size
•service life span
•aircraft type
•placement
•weather
•pilot action
•etc.

Motivation: Flight Data Prediction

Much work has been done to generate
physical models to predict vibration,
however these are tied to all these
parameters which may not be readily
available.

The goal is to create a system which can
generically predict vibration using FDR
data.

Long-Short-Term-Memory Recurrent
Neural Networks

"Learning to store information over
extended period of time intervals via
recurrent backpropagation takes a very
long time, mostly due to insufficient,
decaying error back flow."
- S. Hochrieter & J. Schmidhuber [5]

5. Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

Long-Short-Term-Memory Recurrent
Neural Networks

Typical flight data involves between 10-100s
of flight parameters gathered potentially
multiple times per second and potentially
asynchronously. An average flight in the
NGAFID with 1 hz sampling has ~5800 per
second records.

LSTM RNNs provide a solution to training what
would otherwise be extremely deep RNNs.

LSTM Cell Design
The following gates control flow through a
LSTM neuron:

1. the input gate, which controls how much
information will flow from the inputs of
the cell

2. the forget gate, which controls how much
information will flow from the cell-
memory

3. the output gate, which controls how much
information will flow out of the cell.

This design allows the network to learn not
only about the target values, but also about
how to tune its controls to reach the target
values

LSTM RNN Architectures

LSTM neurons were arranged into three
different architectures and trained to predict
the vibration paramter 5, 10 and 20 seconds
into the future.

First Layer(s) LSTM Cells (M1)

Second Layer LSTM Cells (M2)

Architecture I - 21,170 weights

Architecture II - 21,160 weights

Architecture III - 83,290 weights

Implementation

Python's Theano Library was used to
implement the neural networks.

Main benefits included Theano's ability to
compute error gradients (as opposed to
manually deriving these) and an efficient
implementation.

Experimental Data

1.Altitude
2.Angle of Attack
3.Bleed Pressure
4.Turbine Inlet Temperature
5.Mach Number
6.Primary Rotor/Shaft Rotation

Speed
7.Secondary Rotor/Shaft Rotation

Speed
8.Engine Oil Pressure

9. Engine Oil Quantity
10.Engine Oil Temperature
11.Aircraft Roll
12.Total Air Temperature
13.Wind Direction
14.Wind Speed
15.Engine Vibration

The following parameters were used as inputs
to the RNNs (normalized between 0 and 1):

Training and Testing Data

Training set:
28 flights
41,431 seconds of data

Testing set:
57 flights
38,126 seconds of data

Activation Function

Sigmoid function performed significantly
better than ArcTan, which resulted in
distorted results.

Training Metrics

Both mean squared error (MSE, top) and mean
absolute error (MAE, bottom) were used to evaluate
the RNNs.

MSE was used for training as it provided a smoother
search space than MAE.

TABLE III
TRAINING RESULTS

Error at Error at Error at

5 seconds 10 seconds 20 seconds

Architecture I 0.000398 0.000972 0.001843
Architecture II 0.001516 0.001962 0.002870
Architecture III 0.000409 0.000979 0.001717

at the time step.

VI. IMPLEMENTATION

A. Programming Langauge

Python’s Theano Library [9] was used to implement the
neural networks. It has four major advantages: i) it will
compile the most, if not all, of functions coded using it to
C and CUDA giving fast performance, ii) it will perform the
weights updates for back propagation with minimal overhead,
iii) Theano can compute the gradients of the error (cost
function output) with respect to the weights saving significant
effort and time needed to manually derive the gradients, coding
and debugging them, and finally, iv) it can utilize GPU’s for
further increased performance.

B. Data Processing

The flight data parameters used were normalized between
0 and 1. The sigmoid function is used as an activation
function over all the gates and inputs/outputs. The ArcTan
activation function was tested on the data, however it gave
distorted results and sigmoid function provided significantly
better performance.

C. Machine Specifications

Each of the examined architectures runs on a hyperthreaded
3.5 GHz core and is considered capable of real-time process-
ing. Results were collected using a Mac Pro with 12 logical
cores, with each different architecture being trained for 575
epochs. Run times for training are shown in Table IV. Some
unexpected variance might be realized in these run-times, due
to CPU interruptions which may have occurred over the course
of the experiments. In general, the first two architectures took
similar amounts of time (approximately 8.5-9 hours) for each
time prediction (5, 10 and 20 seconds), and the third took a
bit more than twice as long, at approximately 20 hours for
each time prediction.

VII. RESULTS

The neural networks were run against flights that suffered
from the excessive vibration in a training phase. They were
then run against different set of flights, which also suffered
from the same problem, in a testing phase. There were 28
flights in the training set, with a total of 41,431 seconds of
data. There were 57 flights in the testing set, with a total of
38,126 seconds of data. The networks were allowed to train
for 575 epochs to learn and for the cost function output curve
to flaten.

TABLE IV
RUN TIME (HOURS)

05 10 20

Architecture I 9 8.98 8.85
Architecture II 8.44 8.41 8.4
Architecture III 21.6 19.7 18.5

Fig. 7. Cost function plot for ART III predicting vibration in 10 future sec

A. Cost Function

Mean squared error was used to train the neural networks
as it provides a smoother optimization surface for backprop-
agation. A sample of the cost function output can be seen in
Figure 7. The Figure is a logarithmic plot for architecture III,
for predicting vibrations 10 seconds in the future.

B. Architecture Results

Mean Squared Error (MSE) (shown in Equation 7) was used
as an error measure to train the three architectures, which
resulted in values shown in Table V. Mean Absolute Error
(MAE) (shown in Equation 8) is used as a final measure
of accuracy for the three architectures, with results shown in
Table VI. As the parameters were normalized between 0 and
1, the MAE is also the percentage error.

Error =
0.5⇥

P
(Actual V ib� Predicted V ib)2

Testing Seconds

(7)

Error =

P
[ABS(Actual V ib� Predicted V ib)]

Testing Seconds

(8)

Figures 9, Figures 10, and Figures 11 present the predictions
for all the test flights condensed on the same plot. Time shown
on the x-axis is the total time for all the test flights. Each
flight ends when the vibration reaches the max critical value
(normalized to 1) and then the next flight in the test set beings.
Figure 8 provides an uncompressed example of Architecture

RNN Training

The RNNs were trained for 575 epochs on a
3.5 GHz 12 core Mac Pro.

TABLE III
TRAINING RESULTS

Error at Error at Error at

5 seconds 10 seconds 20 seconds

Architecture I 0.000398 0.000972 0.001843
Architecture II 0.001516 0.001962 0.002870
Architecture III 0.000409 0.000979 0.001717

at the time step.

VI. IMPLEMENTATION

A. Programming Langauge

Python’s Theano Library [9] was used to implement the
neural networks. It has four major advantages: i) it will
compile the most, if not all, of functions coded using it to
C and CUDA giving fast performance, ii) it will perform the
weights updates for back propagation with minimal overhead,
iii) Theano can compute the gradients of the error (cost
function output) with respect to the weights saving significant
effort and time needed to manually derive the gradients, coding
and debugging them, and finally, iv) it can utilize GPU’s for
further increased performance.

B. Data Processing

The flight data parameters used were normalized between
0 and 1. The sigmoid function is used as an activation
function over all the gates and inputs/outputs. The ArcTan
activation function was tested on the data, however it gave
distorted results and sigmoid function provided significantly
better performance.

C. Machine Specifications

Each of the examined architectures runs on a hyperthreaded
3.5 GHz core and is considered capable of real-time process-
ing. Results were collected using a Mac Pro with 12 logical
cores, with each different architecture being trained for 575
epochs. Run times for training are shown in Table IV. Some
unexpected variance might be realized in these run-times, due
to CPU interruptions which may have occurred over the course
of the experiments. In general, the first two architectures took
similar amounts of time (approximately 8.5-9 hours) for each
time prediction (5, 10 and 20 seconds), and the third took a
bit more than twice as long, at approximately 20 hours for
each time prediction.

VII. RESULTS

The neural networks were run against flights that suffered
from the excessive vibration in a training phase. They were
then run against different set of flights, which also suffered
from the same problem, in a testing phase. There were 28
flights in the training set, with a total of 41,431 seconds of
data. There were 57 flights in the testing set, with a total of
38,126 seconds of data. The networks were allowed to train
for 575 epochs to learn and for the cost function output curve
to flaten.

TABLE IV
RUN TIME (HOURS)

05 10 20

Architecture I 9 8.98 8.85
Architecture II 8.44 8.41 8.4
Architecture III 21.6 19.7 18.5

Fig. 7. Cost function plot for ART III predicting vibration in 10 future sec

A. Cost Function

Mean squared error was used to train the neural networks
as it provides a smoother optimization surface for backprop-
agation. A sample of the cost function output can be seen in
Figure 7. The Figure is a logarithmic plot for architecture III,
for predicting vibrations 10 seconds in the future.

B. Architecture Results

Mean Squared Error (MSE) (shown in Equation 7) was used
as an error measure to train the three architectures, which
resulted in values shown in Table V. Mean Absolute Error
(MAE) (shown in Equation 8) is used as a final measure
of accuracy for the three architectures, with results shown in
Table VI. As the parameters were normalized between 0 and
1, the MAE is also the percentage error.

Error =
0.5⇥

P
(Actual V ib� Predicted V ib)2

Testing Seconds

(7)

Error =

P
[ABS(Actual V ib� Predicted V ib)]

Testing Seconds

(8)

Figures 9, Figures 10, and Figures 11 present the predictions
for all the test flights condensed on the same plot. Time shown
on the x-axis is the total time for all the test flights. Each
flight ends when the vibration reaches the max critical value
(normalized to 1) and then the next flight in the test set beings.
Figure 8 provides an uncompressed example of Architecture

Training Results (MSE)

Testing Results (MSE and MAE)

Mean Squared Error

Mean Absolute Error

Architecture I Predictions

5s

10s

20s

Testing Results: Architecture I predicting 5, 10, 20 sec

Testing Results: Architecture II predicting 5, 10, 20 sec

Testing Results: Architecture III predicting 5, 10, 20 sec

Conclusions

Architecture I provided the best predictions:
3.3% MAE for 5 seconds
5.51% MAE for 10 seconds
10.19% error for 20 seconds

Architecture III could potentially be trained longer.

RNNs did not train well on GPUs - needs future
examination.

QUESTIONS?

