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What is Wildlife@Home

• A citizen science project that combines both 
crowd sourcing and volunteer computing 

• Users volunteer their brain power by observing 
videos and images and reporting observations 

• Users volunteer their computing power by 
downloading videos and performing computer 
vision computations 

• A scientific web portal to robustly analyze and 
compare results from users, experts, and the 
computer vision techniques



Images collected for research
• All imagery used for this research is from the Hudson Bay area of 

Manitoba, Canada 
• Trail cameras deployed to learn about predators destroying nests 

– Common eider and lesser snow geese 
– 85 cameras 
– 100 nests 
– Primary issues: 

• Cryptic coloration (camouflage), obscuring vegetation 

• Unmanned Aerial System (UAS) imagery flown along predetermined 
transects 
– Lesser snow geese 
– Vegetation and other landmarks  
– Focus of this research 
– Primary issues: 

• Cryptic coloration of the blue phase lesser snow geese 
• Small objects in comparison to the images



How many Lesser Snow Geese are in these images? 2 in each! 

Changing lighting conditions add to the difficulty of image 
processing.



UAS Image Collection

• In summer 2015, a Trimble UX5 
fixed wing UAS was flown at 
Wapusk National Park in 
Manitoba, Canada 

• Flights were flown at 75m, 
100m, and 125m on pre-defined 
transects with 80% overlap 

• Images were taken with a 16 
megapixel Sony red, green, 
blue camera in the Nadir 
position



UAS Dataset

• 60,000 images were produced from the 
flights 

• 10 mosaics were created using Trimble 
• Over 1 Terabyte of image data, with more 

data being generated each year 
• Too much data for experts to analyze 

alone! 
• That’s where citizen scientist come in



Creating a UI for Image Observations

• Web-based user interface with touch 
capabilities for tablets and desktops 

• Present the same image to three (or 
more) users 

• Match user observations of a single object 
• Extract observed objects from images



Challenges with creating the UI

• Images can be significantly larger than the 
typical viewport of a desktop monitor, e.g. 
1920x1080 pixels 

• Observed objects that are too small (only a 
few pixels square) do not make good 
candidates for computer vision techniques 

• The interface must be usable across a variety 
of viewports, operating systems, and input 
devices 

• The UI must be usable and extensible for 
multiple projects and image sources 
– Specifically, the trail cams and UAS imagery



Overcoming large images

• Large images are split into either 25 or 100 
smaller images, depending on the size 

• Resultant images are constrained to 
approximately 1280 pixels 
– The splitting of images is being re-written to force 

this maximum constraint 
• Use an HTML5 Canvas to allow the user to 

scroll in any direction and zoom the image, in 
the case that the image is still larger than the 
viewport 
– This is especially useful on tablets



• HTML5 Canvas Element 
– zoomable (scroll-wheel or pinch) 
– pannable  (click-drag or touch-drag) 

• Zoom level 
– current magnification level 

• Scroll location (X and Y) 
– shows the current location and size of the image shown 
– relative to the true size of the image
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Enforcing a minimum size limitation

• Bounding boxes are created by 
double-tapping the image to 
signify an object observation 
– User then identifies the species 
– Resizable and movable 

• Objects that are too small do not 
contain enough data to provide 
good computer vision training 

• Observations are therefore 
limited to a minimum 5-pixel 
with and height (25-pixels 
square)

Observation classification

Corresponding 
bounding box in the 

interface



Usability on a variety of hardware

• HTML5 and JavaScript are the only 
languages required to run the UI 
– Modern browsers, including phone and tablet 

browsers, are compatible with both 
technologies 

– Usable on Android, iOS, Windows, Linux, Mac, 
etc. 

• Hammer.JS is used to provide touch-capable 
inputs to the HTML5 Canvas element



Ensuring good observations

• Computer vision techniques require the positive samples 
(observations) to have a low background-to-object ratio 
– If there is too much background information, the object may 

be incorrectly identified in the background of images 
• Different users provide different bounding boxes with 

varying degrees of background information for the same 
objects

GOOD

BAD



Mapping observations

• Use multiple observations to determine a 
“true” observation 
– Trust multiple users, not just a single user 

• Match user observations of the same object 
– Only accept objects which have observations from 

multiple users 
– Two (2) algorithms tested 

• Determine the “true” bounding box for the 
matched objects 
– Two (2) algorithms tested with multiple parameters



Matching algorithms

1. Area Overlap 
• Compares the total amount of area of the 

overlap between two observations 
• Returns the overlapping area as a percentage 

relative to the total area of the observations 

2. Corner-point Distance 
• Calculates the maximum distance between 

the four corners of two observations 
• Returns the maximum distance calculated



Matching algorithms, cont.
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• Matches is the number of matched observation pairs 
• Non-Matched is the number observations without a matched pair 
• False positives are matches that are not actual matches 
• False negatives are when the algorithm fails to match observations that should 

match 

• Point (10px) is chosen as the matching algorithm because: 
• provides the highest matched ratio (0.95) 
• provides a low non-matched ratio (1.16) 
• has no false positives and few false negatives 

Matching algorithm results

MATCHES OF THE 811 OBSERVATIONS FROM 142 IMAGES IN THE TEST DATASET  



Matches vs Non-Matches False Positives and Negatives



Observation extraction

• Now that we have a set of matched observation, we 
have to use the aggregate bounds to create the “true” 
bounds 

1. Average extraction method 
– Averages the location of each corner 
– EASY TO SKEW WITH TOO MUCH BACKGROUND 

• All inputs have the same weight 
• Relies on all users to give relatively good input 

2. Intersection extraction method 
– Pulls out the intersection of each observation 
– EASY TO SKEW WITH TOO LITTLE POSITIVE DATA 

• Relies on a single user having good input 
• Minimizes background noise 
• A single box too small can give less positive data than is present



Observation extraction, cont.

 

 

 
 

 
 
 

 

 

 
 

 
 
 

Average Intersection



Observation extraction results

• Difficult to analyze the amount of negative 
space programmatically 

• Initial manual inspection shows that the 
intersection method is significantly better 
than the average method

AVERAGE

INTERSECT



Conclusions

• Citizen scientists do a good job finding objects 
– only 11.2% of observations failed to be matched 

with an observation from another user 
• However, there is relatively high variability in 

the bounding boxes around the objects 
– Fatigue, human error, speed, lack of training, etc. 

• Using the Corner-Point matching algorithm 
with a 10-pixel parameter and the Intersection 
extraction method provide the best positive 
data set



Future Work

• Compare the results of citizen scientist with 
those of trained experts 
– show that citizen scientists produce observations 

similar to the experts 

• Train a neural network using the objects 
extracted from the citizen scientist 
observations 
– initial work has begun using OpenCV 
– more citizen scientist observations required to 

build the positive dataset
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