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Overview
• What is Neuro-Evolution?


• Background:

• Recurrent Neural 

Networks for Time 
Series Prediction


• EXALT and EXAMM:

• NEAT Innovations

• Edge and Node 

Mutations

• Crossover

• Distributed Neuro-

Evolution


• Results

• Performance vs. 

Traditional

• EXALT Results

• EXAMM Results


• Future Work


• Discussion
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Motivation
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What is Neuro-Evolution?

• Most people use human-designed ANNs, selecting from a  
few architectures that have done will in the literature.


• No guarantees these are most optimal.


• Applying evolutionary strategies to artificial neural 
networks (ANNs):

• EAs to train ANNs (weight selection)

• EAs to design ANNs (what architecture is best?)

• Hyperparameter optimization (what parameters do we 

use for our backpropagation algorithm)
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Background
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Recurrent Neural Networks

Recurrent Neural Networks can be extremely 
challenging to train due to the exploding/
vanishing gradients problem. In short, when 
training a RNN over a time series (via 
backpropagation through time), it needs to 
be completely unrolled over the time series.


For the simple example above (blue arrows 
are forward connections, red are recurrent), 
backpropagating the error from time 3 
reaches all the way back to input at time 0 
(right). Even with this extremely simple RNN, 
we end up having an extremely deep 
network to train.
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Classification vs. Time Series Data Prediction
RNNs are perhaps more commonly used for classification (and have 
been mixed with CNNs for image identification).  This involves outputs 
being fed through a softmax layer which results in probabilities for the 
input being a particular class. The error minimized is for the output 
being an incorrect class:


RNNs can also be used for time series data prediction, however in this 
case the RNN is predicting an exact value of a time series, some 
number of time steps in the future. The error being minimized is 
typically the mean squared error (1) or mean absolute error (2). This is 
an important distinction. 

Using ACO to Optimize LSTM Recurrent Neural Networks GECCO ’18, July 15–19, 2018, Kyoto, Japan
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Figure 4: Nonlinear Output Error inputs neural network.
This networkwas updated to utilize 10 seconds of input data.
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Figure 5: Nonlinear AutoRegressive with eXogenous inputs
neural network. This network was updated to utilize 10 sec-
onds of input data, along with the previous 10 predicted out-
put values.
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Figure 6: Nonlinear Box-Jenkins inputs neural network.
This networkwas updated to utilize 10 seconds of input data,
along with the future output and error values. Due to requir-
ing future knowledge, it is not possible to utilize this net-
work in an online fashion.

indicative of a case of vanishing gradients. Accordingly, the study
allowed for the recurrent weights to be considered in the gradient
calculations in order to update the weights with respect to the cost
function output.

5.2.3 Nonlinear Box-Jenkins (NBJ) Inputs Neural Network: The
structure of the NBJ is depicted in Figure 6. As previously noted,
this network is not feasible for prediction past one time step in
the future in an online manner, as it requires the actual prediction
value and error between it and the predicted value to be fed back
into the network. However, as this work delt with o�ine data, the
actual future vibration values, error, and the output were all fed to
the network along with the current instance parameters and lag
inputs. As in the other networks, the values for the previous 10
time steps were also utilized.

Table 1: K-Fold Cross Validation Results

Prediction Errors (MAE)
LSTM NOE NARX NBJ ACO

Subsample 1 8.34% 10.6% 8.13% 8.40% 7.80%
Subsample 2 4.05% 6.96% 6.08% 7.34% 3.70%
Subsample 3 6.76% 16.8% 11.2% 13.6% 3.49%

Mean 0.0638 0.1145 0.0847 0.0977 0.0501
Std. Dev. 0.0217 0.0497 0.0258 0.0333 0.0245
5.3 Error Function
For all the networks studied in this work, Mean Squared Error (MSE)
(shown in Equation 1) was used as an error measure for training,
as it provides a smoother optimization surface for backpropagation
than mean average error. Mean Absolute Error (MAE) (shown in
Equation 2) was used as a �nal measure of accuracy for the three
architectures, as because the parameters were normalized between
0 and 1, the MAE is also the percentage error.

Error =
0.5 ⇥Õ(Actual V ib � Predicted Vib)2

Testin� Seconds
(1)

Error =

Õ[ABS(Actual V ib � Predicted Vib)]
Testin� Seconds

(2)

5.4 Machine Speci�cations
Python’s Theano Library [23] was used to implement the neural
networks and MPI for Python [3] and was used to run the ACO op-
timization on a high performance computing cluster. The cluster’s
operating system was Red Hat Enterprise Linux (RHEL) 7.2, and
had 31 nodes, each with 8 cores (248 cores in total) and 64GBs RAM
(1948 GB in total). The interconnect was 10 gigabit (GB) In�niBand.

6 RESULTS
The ACO algorithm was run for 1000 iterations using 200 ants. The
networks were allowed to train for 575 epochs to learn and for
the error curve to �atten. The minimum value for the pheromones
were 1 and the maximum was 20. The population size was equal to
number number of iterations in the ACO process, i.e., the population
size was also 1000. Each run took approximately 4 days.

A dataset of 57 �ights was divided into 3 subsamples, each con-
sisting of 19 �ights. The subsamples were used to cross validate the
results by examining combations utilizing two of the subsamples
as the training data set and the third as the testing set. Subsamples
1, 2 and 3 consisted of 23,371, 31,207 and 25,011 seconds of �ight
data, respectively.

These subsamples were used to train the NOE, NARX, NBH, base
architecture and the ACO optimized architecture. Figures 7 shows
predictions for the di�erent models over a selection of test �ights,
and Figure 8 shows predictions an single uncompressed (higher
resolution) test �ight. Table 1 compares these models to the base
architecture (LSTM) and the ACO optimized architecture (ACO).

6.1 NOE, NARX, and NBJ Results
Somewhat expectedly, the NOE model performed the worst with
with a mean error of 11.45% (� = 0.0497). The NBJ model performed
better than the NOE model with a mean error of 9.77% (� = 0.0333),
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Evolutionary Algorithms in a Nutshell

Evolutionary algorithms contain a population of individuals 
(potential problem solutions), each with a fitness (a 
representation of how well they perform on the task).


They progressively generate new populations through 
mutation, recombination and selection operations.


• Mutation: Select a single individual as a parent and 
perform a modification to it to create a child individual.


• Recombination: Select two (or more!) individuals as 
parents and combine them to create a child individual.


• Selection: Retain a fit individual in the population to 
preserve best found solutions. 
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EXALT and EXAMM
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EXALT and EXAMM
• Neuro-Evolution algorithms based of Neuro-Evolution of 

Augmenting Topologies (NEAT) [1].


• Evolutionary Exploration of Augmenting LSTM Topologies (EXALT):

• Progressively grows RNNs: nodes can be simple neurons or 

LSTMs.

• Parallel in nature.

• Node-level mutations not present in NEAT.


• Evolutionary Exploration of Augmenting Memory Models (EXAMM)

• Based on EXALT, except with a library of memory cells. Nodes 

can be LSTM, GRU, UGRNN, MGU, or Delta-RNNs.

• Parallel -- also uses islands.

• Mutations have further refinements from EXALT.


[1] Kenneth Stanley and Risto Miikkulainen. Evolving neural networks through 
augmenting topologies. Evolutionary computation: 10, 2. (2002), 99–127.
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NEAT Innovation Numbers

• In neuro-evolution, we need to perform crossover/
recombination between progressively grown neural networks.


• How do we know which edges are the "same" in the above 
neural networks?
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NEAT Innovation Numbers

• NEAT assigns a unique "innovation number" to each newly generated 
edge.


• This allows NN graphs to be compared in linear (assuming edges are 
sorted according to innovation numbers) time - otherwise NN graphs 
could be ambiguous and very computationally expensive to compare.
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NEAT Innovation Numbers

• In the above example, the edges on the left of NN 1 
correspond to the same edges on the right of NN 2.
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NEAT Innovation Numbers

• However, a similar structure may have been generated evolutionarily with 
"different" edges - in this case they will have different innovation numbers.


• This way we know the edges on the right of NN 2 are the same as those on 
the left of NN 1, but the other edges occurred through a different 
evolutionary process and should be treated differently.
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Edge and Node Mutations
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Edge Mutations: Split Edge

• EXALT/EXAMM always start with a minimal feed forward network 
(top left) with input nodes for each input parameter fully connected 
to output nodes for each output parameter (no hidden nodes).


• The edge between Input 1 and Output 1 is selected to be split. A 
new node with innovation number (IN) 1 is created.
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Edge Mutations: Add Edge

Input 1
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Output 
1

Node 
IN 1

Input 1
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Node 
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• Input 3 and Node IN 1 are selected to have an edge 
between them added. 
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Edge Mutations: Enable Edge
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• The edge between Input 3 and Output 1 is enabled. 
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Edge Mutations: Add Recurrent Edge

Input 1

Input 2

Input 3

Output 
1

Node 
IN 1

Add Recurrent 
Edge

Input 1

Input 2

Input 3

Output 
1

Node 
IN 1

• A recurrent edge is added between Output 1 and Node IN 
1.
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Edge Mutations: Disable Edge
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• The edge between Input 3 and Output 1 is disabled. 
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Node Mutations: Add Node
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• A node with IN 2 is selected to be added at a depth 
between the inputs & Node IN 1. Edges are randomly 
added to Input 2 and 3, and Node IN 1 and Output 1. 
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Node Mutations: Split Node
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• Node IN 1 is selected to be split. It is disabled with its 
input/output edges. It is split into Nodes IN 3 and 4, 
which get half the inputs. Both have an output edge to 
Output 1 since there was only one output from Node IN 1. 
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Node Mutations: Merge Node
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• Node IN 2 and 3 are selected for a merger (input/output 
edges are dis- abled). Node IN 5 is created with edges 
between all their inputs/outputs. 
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Node Mutations: Enable Node
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• Node IN 1 is selected to be enabled, along with all its 
input and output edges. 



CHAI AI Seminar 
February 11, 2019

Node Mutations: Disable Node
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• Node IN 5 is selected to be disabled, along with all its 
input and output edges. 
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Clone
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• Clone makes no modifications at all to the parent, 
allowing it to continue with the back propagation process.
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Crossover
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Crossover
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• Crossover creates a child RNN using all 
reachable nodes and edges from two parents. 
A node or edge is reachable if there is a path of 
enabled nodes and edges from an input node 
to it as well as a path of enabled nodes and 
edges from it to an output node, i.e., a node or 
edge is reachable if it actually affects the RNN. 
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Crossover: Lamarckian Weight Initialization

• Initial RNN weights generated uniformly at random 
(between -0.5 and 0.5).


• New components (nodes/edges) are generated a normal 
distribution based on the average, standard deviation, 
and variance of the parents’ weights.
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Crossover: Lamarckian Weight Initialization

• In crossover where a node/edge exists in both parents we 
recombine the weights. The child weights, wc, are 
generated by recombining the parents’ weights:


wc = r(wp2 - wp1) + wp1


• Where r is a random number -0.5 <= r <= 1.5, where wp1 
is the weight from the more fit parent, and wp2 is the 
weight from the less fit parent. We can change r's bounds 
to prefer weights near parent over the other.

wp2

wp1

weight range
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Distributed Neuro-Evolution
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Synchronous/Parallel EAs

• Traditional EAs generate an entire population at a time, evaluate the 
fitness of every individual and then generate the next population.


• This has problems in that if the population size is not evenly 
divisible by the number of processors available there is wasted 
computation. Also, the population size can't be less than the 
number of processors.
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Synchronous/Parallel EAs

• Things are even more challenging if the fitness evaluation 
times of the individuals are different or even worse 
nondeterministic. Lots of waiting and unused cycles.
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Master Process

Asynchronous EAs

• The Master process keeps a  "steady state" populuation.

• Workers independently request work (master generates new RNNs 

to train), calculate fitness and report results.

• No worker waits on another worker - naturally load balanced. 

Workers can even request a queue of work to reduce latency.

• Number of worker processes is independent of population size.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Worker Process 1 
Worker requests an individual. 

Worker calculates fitness function (in our case, 
trains the RNN with backprop). 

Worker reports results and requests more work.

Worker Process 2 
Worker requests an individual. 

Worker calculates fitness function (in our case, 
trains the RNN with backprop). 

Worker reports results and requests more work.

Worker Process N 
Worker requests an individual. 

Worker calculates fitness function (in our case, 
trains the RNN with backprop). 

Worker reports results and requests more work.

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

...
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Master Process

Asynchronous EAs

• Asynchronous EAs can scale to millions of processors, whereas 
synchronous EAs are very limited [1].


[1] Travis Desell, David P. Anderson, Malik Magdon-Ismail, Heidi Newberg, Boleslaw 
Szymanski and Carlos A. Varela. An Analysis of Massively Distributed Evolutionary 
Algorithms. In the Proceedings of the 2010 IEEE Congress on Evolutionary Computation 
(IEEE CEC 2010). pages 1-8. Barcelona, Spain. July 2010. 
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trains the RNN with backprop). 

Worker reports results and requests more work.
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Islands

• EXAMM uses islands, which have been shown to potentially provide 
superlinear speedup to some EAs [2].


• The master process keeps separate "island" populations and performs 
crossover within islands (intra-island crossover) or crossover between 
islands (inter-island crossover).


[2] Enrique Alba and Marco Tomassini. 2002. Parallelism and evolutionary algorithms. IEEE 
Transactions on Evolutionary Computation: 6, 5 (2002), 443–462. 
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Islands

• When workers request individuals, the master process generates them 
from an island in a round-robin manner.


• Individuals are inserted into an island if they are better than the worst 
individual in that island (and the worst is removed) - Individual islands 
evolve/speciate faster.


• Periodically crossover happens between islands for most fit 
individuals, sharing information (a random individual on an island is 
crossed over with the best individual from another island).

Master Process

Individual 1

Individual 2

Individual 3
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Individual 1

Individual 2
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Individual 3
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Simple EXAMM/Asynchronous EA Pseudo-code

• Workers repeatedly 
request RNNs, train them 
and send the resulting 
RNNs to the master.


• The master repeatedly 
receives messages from 
the workers, inserting 
RNNs to the population/
island(s) as they arrive 
and generating new 
RNNs on work requests.

EXAMM examm = new EXAMM(...)

while (not examm.done) {


Message msg = get_msg_any_worker()

switch (msg.type) {


if (msg.type == RESULT_MSG) {

examm.insert(msg.get_rnn())


} else if (msg.type == request) {

if (done) msg.src.send(TERMINATE_MSG)

else msg.src.send(examm.create_rnn())


}

}


}

Message msg;

while ((msg = get_msg_from_master()) != TERMINATE_MSG) {


RNN rnn = msg.get_rnn();

rnn.backpropagate();

master.send(rnn); 

}

Worker Processes:

Master Process:
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Data Sets
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Data Sets

• Two large-scale, real-world data from Aviation and Power 
industries used to evaluate EXAMM.


• 10 flights from the National General Aviation Flight 
Information Database (NGAFID):

• 1-3 hours long

• per second readings

• 26 parameters


• 12 coal plant burners from a DOE award with Microbeam 
Technologies, Inc.

• 10 days long

• per minute readings

• 12 parameters
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Data Sets: Coal Plant

• Parameters are non-seasonal and correlated/dependent.

• Predicting Fuel Flow and Flame Intensity

• Data made public on github repo.  Pre-normalized and 

anonymized.

1. Conditioner Inlet Temp

2. Conditioner Outlet Temp

3. Coal Feeder Rate

4. Primary Air Flow

5. Primary Air Split

6. System Secondary Air 

Flow Total

7. Secondary Air Flow


8. Secondary Air Split

9. Tertiary Air Split

10. Total Combined Air Flow

11. Supplementary Fuel 

Flow 
12. Main Flame Intensity

12 data files, 12 parameters:
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Data Sets: NGAFID

• Parameters are non-seasonal and correlated/dependent.

• Predicting RPM and Pitch

• Data made public on github repo.  Non-normalized and 

anonymized.

1. Altitude Above Ground Level (AltAGL)

2. Engine 1 Cylinder Head Temperature 1 (E1 

CHT1) 

3. Engine 1 Cylinder Head Temperature 2 (E1 

CHT2) 

4. Engine 1 Cylinder Head Temperature 3 (E1 

CHT3) 

5. Engine 1 Cylinder Head Temperature 4 (E1 

CHT4) 

6. Engine 1 Exhaust Gas Temperature 1 (E1 EGT1) 

7. Engine 1 Exhaust Gas Temperature 2 (E1 EGT2) 

8. Engine 1 Exhaust Gas Temperature 3 (E1 EGT3) 

9. Engine 1 Exhaust Gas Temperature 4 (E1 EGT4) 

10. Engine 1 Oil Pressure (E1 OilP) 

11. Engine 1 Oil Temperature (E1 OilT) 


12. Engine 1 Rotations Per minute (E1 RPM) 
13. Fuel Quantity Left (FQtyL)

14. Fuel Quantity Right (FQtyR)

15. GndSpd - Ground Speed (GndSpd)

16. Indicated Air Speed (IAS) 

17. Lateral Acceleration (LatAc)

18. Normal Acceleration (NormAc)

19. Outside Air Temperature (OAT) 

20. Pitch 
21. Roll

22. True Airspeed (TAS) 

23. Voltage 1 (volt1)

24. Voltage 2 (volt2)

25. Vertical Speed (VSpd)

26. Vertical Speed Gs (VSpdG)

10 data files, 26 parameters:
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Results
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• RIT Research Computing systems used to gather results.


• Compute nodes heterogeneous:


• 10 core 2.3 GHz Intel Xeon CPU E5-2650 v3


• 32 core 2.6 GHz AMD Opteron Processor 6282 SE


• 48 core 2.5 GHz AMD Opteron Processor 6180 SEs


• All compute nodes ran RedHat Enterprise Linux 6.10.


• EXALT/EXAMM runs utilized different compute notes as 
determined by RC's SLURM scheduler.

Computing Environment
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• EXALT compared to traditional RNNs (1-layer FF, 2-layer 
FF, 1-layer LSTM, 2-layer lSTM, Jordan, Elman) to predict 
Flame Intensity


• K-fold cross validation (1 file per fold), 10 repeats per fold 
- 720 runs for each of the fixed RNN types.


• K-fold cross validation (1 file per fold), 10 repeats per fold 
- 120 runs for EXALT.


• Fixed RNNs trained for 1000 epochs.

• EXALT trained 2000 RNNs for 10 epochs each, distributed 

across 20 processes -- compute was expected to be 
somewhat comparable.

EXALT Experimental Setup
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• Min/avg/max mean squared error while training for each 
fold.

1 Layer Feed Forward
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2 Layer Feed Forward

• Min/avg/max mean squared error while training for each 
fold.
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1 Layer LSTM

• Min/avg/max mean squared error while training for each 
fold.
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2 Layer LSTM

• Min/avg/max mean squared error while training for each 
fold.
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Jordan

• Min/avg/max mean squared error while training for each 
fold.
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Elman

• Min/avg/max mean squared error while training for each 
fold.
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EXALT

• Min/avg/max mean squared error while training for each 
fold.
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• Significantly more reliable than the fixed architectures.

• Wallclock time was faster in terms of training time, 2-10x faster than the 

fixed RNNs.

• EXALT's RNNs were smaller (see above).


• However, some of the fixed RNNs did find slightly better performance in 
the best case across all the repeats.


AbdElRahman ElSaid, Steven Benson, Shuchita Patwardhan, David Stadem and Travis Desell. 
2019. Evolving Recurrent Neural Networks for Time Series Data Prediction of Coal Plant 
Parameters. In The 22nd International Conference on the Applications of Evolutionary 
Computation. Leipzig, Germany. April 22-24, 2019. To appear. 

EXALT Results
Nodes Edges Rec. Edges Weights

One Layer FF 25 156 0 181
Two Layer FF 37 300 0 337
Jordan RNN 25 156 12 193
Elman RNN 25 156 144 325
One Layer LSTM 25 156 0 311
Two Layer LSTM 37 300 0 587
EXALT Best Avg. 14.7 26.2 14.6 81.5

Table 2. Number of nodes, edges, recurrent edges and trainable connections (weights)
in each evaluated network type, and the average values for the best evolved RNNs by
EXALT.

Genome Fitness: 2.99765% MAE
input 2
depth 0

Burner-Conditioner_Inlet_Temp

input 12
depth 0

Burner-Conditioner_Outlet_Temp

output 13
depth 1

Burner-Main_Flm_Int

node 31
depth 0.737654

node 458
depth 0.784587

input 10
depth 0

Burner-Primary_Air_Flow

node 14
depth 0.5

input 9
depth 0

Burner-Primary_Air_Split

input 8
depth 0

Burner-System_Secondary_Air_Flow_Total

input 6
depth 0

Burner-Secondary_Air_Split

input 5
depth 0

Burner-Tertiary_Air_Split

node 16
depth 0.5

input 4
depth 0

Burner-Total_Comb_Air_Flow

input 3
depth 0

Burner-Supp_Oil_Flow

input 1
depth 0

Burner-Main_Flm_Int

Genome Fitness: 2.95717% MAE
input 12
depth 0

Burner-Conditioner_Inlet_Temp

input 1
depth 0

Burner-Conditioner_Outlet_Temp

output 13
depth 1

Burner-Main_Flm_Int

node 31
depth 0.567021

input 11
depth 0

Burner-Coal_Feeder_Rate

node 49
depth 0.656638

input 10
depth 0

Burner-Primary_Air_Flow

node 21
depth 0.303324

node 191
depth 0.668649

input 9
depth 0

Burner-Primary_Air_Split

node 25
depth 0.98803

input 8
depth 0

Burner-System_Secondary_Air_Flow_Total

input 7
depth 0

Burner-Secondary_Air_Flow

input 6
depth 0

Burner-Secondary_Air_Split

input 5
depth 0

Burner-Tertiary_Air_Split

input 3
depth 0

Burner-Supp_Oil_Flow

input 2
depth 0

Burner-Main_Flm_Int

node 55
depth 0.151662

Fig. 3. Two examples of the best RNNs evolved by EXALT. Orange nodes are LSTM
neurons, while black ndoes are regular neurons. Dotted lines represet recurrent connec-
tions, while solid lines represent feed forward connections. Colors of the lines represent
the magnitude of the weights weights (-1.0 is the most blue to 1.0 being the most red).
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• EXAMM run with individual memory cells, individual memory cells + 
simple neurons, and with all memory cells and simple neurons.


• Memory cell types:

• Delta-RNN

• GRU

• LSTM

• MGU

• UGRNN


• K-fold cross validation (2 files per fold), 10 repeats per fold, 2 output 
parameters (RPM, Pitch) on NGAFID data - 1100 runs.


• K-fold cross validation (2 files per fold), 10 repeats per fold, 2 output 
parameters (Flame Intensity, Fuel Flow) on Coal Data - 1320 runs. 


• EXALT trained 2000 RNNs for 10 epochs each, distributed across 20 
processes.


• 4,840,000 RNNs trained in total in ~24,200 CPU hours

EXAMM Experimental Setup
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• Rankings (deviations from mean) for flame intensity 
predictions. Lower is better.

Flame IntensityGECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.
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• Rankings (deviations from mean) for flame intensity 
predictions. Lower is better.

Fuel Flow

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.



CHAI AI Seminar 
February 11, 2019

• Rankings (deviations from mean) for flame intensity 
predictions. Lower is better.

RPM

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.
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• Rankings (deviations from mean) for flame intensity 
predictions. Lower is better.

Pitch

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.
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• Combined rankings from all 4 prediction parameters.

Overall Rankings

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.
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• No memory structure was the best. 
• Delta-RNN, LSTM, and MGU tended better than GRU, 

and UGRNN (except in fuel flow, best avg case for pitch).


• Delta-RNNs compared  competitively with LSTMs while 
requiring less weights (i.e., a less complex structure).


Alex Ororbia*, AbdElRahman ElSaid and Travis Desell*. Investigating 
Recurrent Neural Network Memory Structures using Neuro-Evolution. 
arXiv Neural and Evolutionary Computing (cs.NE): https://arxiv.org/abs/
1902.02390

EXAMM Results

https://arxiv.org/abs/1902.02390
https://arxiv.org/abs/1902.02390
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• Adding simple neurons generally helped - with some notable 
exceptions. 

• All memory cell types improved with them except GRU.

• Simple neurons + MGUs resulted in dramatic improvement, bringing them 

from some of the worst rankings to some of the best rankings (e.g., in the 
overall rankings for best found networks, MGU cells alone performed the 
worst while MGU and feedforward performed the best).


• Other cell types (LSTM and -RNN) showed less of an improvement.


• This finding may highlight that the MGU cells could stand to benefit from 
further development.


• Even the rather simple change of allowing simple neurons can result in 
significant changes in RNN predictive ability. Selection of node and cell 
types for neuro-evolution should be done carefully.


• Open question:  Why do GRU cells performed worse with simple neurons 
added? Why do MGU cells perform so much better?

EXAMM Results
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• Allowing all memory cells has risks and benefits. 

• All cell types + simple neurons found the best networks in 
the case of fuel flow, 2nd best in the case of pitch, and 3rd 
best in the case of flame intensity.


• Using all memory cell types generally performed better than 
the mean on the best case, however peformed worse in the 
average and worst cases.


• Much larger search space (6 possible node types).


• Open Question: Can we further improve results by 
dynamically adapting the rates at which memory cells are 
generated?

EXAMM Results
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• Larger networks tended to perform better, yet memory cell count correlation to 
MSE was not a great indicator of which cells performed the best. 

• Challenges for developing neuro-evolution algorithms:

• Compared the memory cells types most correlated to improved performance 

against the memory cell types most frequently selected by EXAMM.

• EXAMM was not selecting cell types that would produce the best performing RNNs, 

rather cell types that provided an improvement to the population (most did) -- this 
could be a non-optimal choice.


• An RNN with a small number of well trained memory cells was sufficient to yield 
good predictions, and adding more cells to the network only served to confuse the 
predictions. 


• Open problems: 
• Running a neuro-evolution strategy allowing all memory cell types and then utilizing 

counts or correlations to select a single memory cell type for future runs may not 
produce the best results.


• Dynamically tuning which memory cells are selected by a neuro-evolution strategy is 
more challenging since the process may not select the best cell types (e.g., when 
the network already has enough memory cells) – so this would at least need to be 
coupled with another strategy to determine when the network is “big enough”. 

EXAMM Results
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• Evolving memory cell structures

• Testing multiple activation functions (tanh mostly used in 

this work)

• Hyperparameter optimization for RNN training

• Layer-level mutations to speed evolution

• Self-tuning EXAMM

Future Work
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Discussion/Questions?

https://github.com/travisdesell/exact


