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Networks for Time 
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What is Neuro-Evolution?

• Most people use human-designed ANNs, selecting from a  
few architectures that have done will in the literature.


• No guarantees these are most optimal.


• Applying evolutionary strategies to artificial neural 
networks (ANNs):

• EAs to train ANNs (weight selection)

• EAs to design ANNs (what architecture is best?)

• Hyperparameter optimization (what parameters do we 

use for our backpropagation algorithm)
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Background
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Recurrent Neural Networks

Recurrent Neural Networks can be extremely 
challenging to train due to the exploding/
vanishing gradients problem. In short, when 
training a RNN over a time series (via 
backpropagation through time), it needs to 
be completely unrolled over the time series.


For the simple example above (blue arrows 
are forward connections, red are recurrent), 
backpropagating the error from time 3 
reaches all the way back to input at time 0 
(right). Even with this extremely simple RNN, 
we end up having an extremely deep 
network to train.
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Classification vs. Time Series Data Prediction
RNNs are perhaps more commonly used for classification (and have 
been mixed with CNNs for image identification).  This involves outputs 
being fed through a softmax layer which results in probabilities for the 
input being a particular class. The error minimized is for the output 
being an incorrect class:


RNNs can also be used for time series data prediction, however in this 
case the RNN is predicting an exact value of a time series, some 
number of time steps in the future. The error being minimized is 
typically the mean squared error (1) or mean absolute error (2). This is 
an important distinction. 

Using ACO to Optimize LSTM Recurrent Neural Networks GECCO ’18, July 15–19, 2018, Kyoto, Japan
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Figure 4: Nonlinear Output Error inputs neural network.
This networkwas updated to utilize 10 seconds of input data.
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Figure 5: Nonlinear AutoRegressive with eXogenous inputs
neural network. This network was updated to utilize 10 sec-
onds of input data, along with the previous 10 predicted out-
put values.
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Figure 6: Nonlinear Box-Jenkins inputs neural network.
This networkwas updated to utilize 10 seconds of input data,
along with the future output and error values. Due to requir-
ing future knowledge, it is not possible to utilize this net-
work in an online fashion.

indicative of a case of vanishing gradients. Accordingly, the study
allowed for the recurrent weights to be considered in the gradient
calculations in order to update the weights with respect to the cost
function output.

5.2.3 Nonlinear Box-Jenkins (NBJ) Inputs Neural Network: The
structure of the NBJ is depicted in Figure 6. As previously noted,
this network is not feasible for prediction past one time step in
the future in an online manner, as it requires the actual prediction
value and error between it and the predicted value to be fed back
into the network. However, as this work delt with o�ine data, the
actual future vibration values, error, and the output were all fed to
the network along with the current instance parameters and lag
inputs. As in the other networks, the values for the previous 10
time steps were also utilized.

Table 1: K-Fold Cross Validation Results

Prediction Errors (MAE)
LSTM NOE NARX NBJ ACO

Subsample 1 8.34% 10.6% 8.13% 8.40% 7.80%
Subsample 2 4.05% 6.96% 6.08% 7.34% 3.70%
Subsample 3 6.76% 16.8% 11.2% 13.6% 3.49%

Mean 0.0638 0.1145 0.0847 0.0977 0.0501
Std. Dev. 0.0217 0.0497 0.0258 0.0333 0.0245
5.3 Error Function
For all the networks studied in this work, Mean Squared Error (MSE)
(shown in Equation 1) was used as an error measure for training,
as it provides a smoother optimization surface for backpropagation
than mean average error. Mean Absolute Error (MAE) (shown in
Equation 2) was used as a �nal measure of accuracy for the three
architectures, as because the parameters were normalized between
0 and 1, the MAE is also the percentage error.

Error =
0.5 ⇥Õ(Actual V ib � Predicted Vib)2

Testin� Seconds
(1)

Error =

Õ[ABS(Actual V ib � Predicted Vib)]
Testin� Seconds

(2)

5.4 Machine Speci�cations
Python’s Theano Library [23] was used to implement the neural
networks and MPI for Python [3] and was used to run the ACO op-
timization on a high performance computing cluster. The cluster’s
operating system was Red Hat Enterprise Linux (RHEL) 7.2, and
had 31 nodes, each with 8 cores (248 cores in total) and 64GBs RAM
(1948 GB in total). The interconnect was 10 gigabit (GB) In�niBand.

6 RESULTS
The ACO algorithm was run for 1000 iterations using 200 ants. The
networks were allowed to train for 575 epochs to learn and for
the error curve to �atten. The minimum value for the pheromones
were 1 and the maximum was 20. The population size was equal to
number number of iterations in the ACO process, i.e., the population
size was also 1000. Each run took approximately 4 days.

A dataset of 57 �ights was divided into 3 subsamples, each con-
sisting of 19 �ights. The subsamples were used to cross validate the
results by examining combations utilizing two of the subsamples
as the training data set and the third as the testing set. Subsamples
1, 2 and 3 consisted of 23,371, 31,207 and 25,011 seconds of �ight
data, respectively.

These subsamples were used to train the NOE, NARX, NBH, base
architecture and the ACO optimized architecture. Figures 7 shows
predictions for the di�erent models over a selection of test �ights,
and Figure 8 shows predictions an single uncompressed (higher
resolution) test �ight. Table 1 compares these models to the base
architecture (LSTM) and the ACO optimized architecture (ACO).

6.1 NOE, NARX, and NBJ Results
Somewhat expectedly, the NOE model performed the worst with
with a mean error of 11.45% (� = 0.0497). The NBJ model performed
better than the NOE model with a mean error of 9.77% (� = 0.0333),
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EXALT
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EXALT
• Neuro-Evolution algorithms based of Neuro-Evolution of 

Augmenting Topologies (NEAT) [1].


• Evolutionary eXploration of Augmenting LSTM Topologies 
(EXALT):

• Progressively grows RNNs: nodes can be simple neurons 

or LSTMs.

• Parallel in nature.

• Node-level mutations not present in NEAT.

• No speciation.

• Generated RNNs are trained via backpropagation.

• Weights pre-initialized from parents (Lamarckian evolution).


[1] Kenneth Stanley and Risto Miikkulainen. Evolving neural networks through 
augmenting topologies. Evolutionary computation: 10, 2. (2002), 99–127.
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NEAT Innovation Numbers

• In neuro-evolution, we need to perform crossover/
recombination between progressively grown neural networks.


• How do we know which edges are the "same" in the above 
neural networks?

Input

Output

Hidden Hidden

Input

Output

Hidden Hidden

NN 1 NN 2
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NEAT Innovation Numbers

• NEAT assigns a unique "innovation number" to each newly generated 
edge.


• This allows NN graphs to be compared in linear (assuming edges are 
sorted according to innovation numbers) time - otherwise NN graphs 
could be ambiguous and very computationally expensive to compare.
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NEAT Innovation Numbers

• In the above example, the edges on the left of NN 1 
correspond to the same edges on the right of NN 2.
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NEAT Innovation Numbers

• However, a similar structure may have been generated evolutionarily with 
"different" edges - in this case they will have different innovation numbers.


• This way we know the edges on the right of NN 2 are the same as those on 
the left of NN 1, but the other edges occurred through a different 
evolutionary process and should be treated differently.
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Edge and Node Mutations
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Edge Mutations: Split Edge

• EXALT always starts with a minimal feed forward network (top 
left) with input nodes for each input parameter fully connected 
to output nodes for each output parameter (no hidden nodes).


• The edge between Input 1 and Output 1 is selected to be split. 
A new node with innovation number (IN) 1 is created.

Input 1
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Output 
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Input 1

Input 2

Input 3

Output 
1

Node 
IN 1

Split Edge
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Edge Mutations: Add Edge

Input 1
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Output 
1

Node 
IN 1

Input 1
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Output 
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Add Edge

• Input 3 and Node IN 1 are selected to have an edge 
between them added. 
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Edge Mutations: Enable Edge

Input 1
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• The edge between Input 3 and Output 1 is enabled. 
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Edge Mutations: Add Recurrent Edge
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• A recurrent edge is added between Output 1 and Node IN 
1.
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Edge Mutations: Disable Edge
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• The edge between Input 3 and Output 1 is disabled. 
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Node Mutations: Add Node
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• A node with IN 2 is selected to be added at a depth 
between the inputs & Node IN 1. Edges are randomly 
added to Input 2 and 3, and Node IN 1 and Output 1. 
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Node Mutations: Split Node
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• Node IN 1 is selected to be split. It is disabled with its 
input/output edges. It is split into Nodes IN 3 and 4, 
which get half the inputs. Both have an output edge to 
Output 1 since there was only one output from Node IN 1. 
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Node Mutations: Merge Node
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• Node IN 2 and 3 are selected for a merge (input/output 
edges are disabled). Node IN 5 is created with edges 
between all their inputs/outputs. 
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Node Mutations: Enable Node
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• Node IN 1 is selected to be enabled, along with all its 
input and output edges. 
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Node Mutations: Disable Node
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• Node IN 5 is selected to be disabled, along with all its 
input and output edges. 
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Clone
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• Clone makes no modifications at all to the parent, 
allowing it to continue with the back propagation process.
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Crossover
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Crossover
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• Crossover creates a child RNN using all 
reachable nodes and edges from two parents. 
A node or edge is reachable if there is a path of 
enabled nodes and edges from an input node 
to it as well as a path of enabled nodes and 
edges from it to an output node, i.e., a node or 
edge is reachable if it actually affects the RNN. 
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Crossover: Lamarckian Weight Initialization

• Initial RNN weights generated uniformly at random 
(between -0.5 and 0.5).


• New components (nodes/edges) are generated a normal 
distribution based on the average, standard deviation, 
and variance of the parents’ weights.
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Crossover: Lamarckian Weight Initialization

• In crossover where a node/edge exists in both parents we 
recombine the weights. The child weights, wc, are 
generated by recombining the parents’ weights:


wc = r(wp2 - wp1) + wp1


• Where r is a random number -0.5 <= r <= 1.5, where wp1 
is the weight from the more fit parent, and wp2 is the 
weight from the less fit parent. We can change r's bounds 
to prefer weights near one parent over the other.

wp2

wp1

weight range
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Distributed Neuro-Evolution
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Synchronous/Parallel EAs

• Traditional EAs generate an entire population at a time, evaluate the 
fitness of every individual and then generate the next population.


• This has problems in that if the population size is not evenly 
divisible by the number of processors available there is wasted 
computation. Also, the population size can't be less than the 
number of processors.
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Synchronous/Parallel EAs

• Things are even more challenging if the fitness evaluation 
times of the individuals are different or even worse 
nondeterministic. Lots of waiting and unused cycles.
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Master Process

Asynchronous EAs

• The Master process keeps a  "steady state" populuation.

• Workers independently request work (master generates new RNNs 

to train), calculate fitness and report results.

• No worker waits on another worker - naturally load balanced. 

Workers can even request a queue of work to reduce latency.

• Number of worker processes is independent of population size.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Worker Process 1 
Worker requests an individual. 

Worker calculates fitness function (in our case, 
trains the RNN with backprop). 

Worker reports results and requests more work.

Worker Process 2 
Worker requests an individual. 

Worker calculates fitness function (in our case, 
trains the RNN with backprop). 

Worker reports results and requests more work.

Worker Process N 
Worker requests an individual. 

Worker calculates fitness function (in our case, 
trains the RNN with backprop). 

Worker reports results and requests more work.

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

...
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Master Process

Asynchronous EAs

• Asynchronous EAs can scale to millions of processors, whereas 
synchronous EAs are very limited [1].


[1] Travis Desell, David P. Anderson, Malik Magdon-Ismail, Heidi Newberg, Boleslaw 
Szymanski and Carlos A. Varela. An Analysis of Massively Distributed Evolutionary 
Algorithms. In the Proceedings of the 2010 IEEE Congress on Evolutionary Computation 
(IEEE CEC 2010). pages 1-8. Barcelona, Spain. July 2010. 
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Data Sets
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Data Sets: Coal Plant

• Parameters are non-seasonal and correlated/dependent.

• Predicting Main Flame Intensity

• Data made public on github repo.  Pre-normalized and anonymized.

• 12 coal plant burners from a DOE award with Microbeam 

Technologies, Inc.

• 10 days long

• per minute readings

• 12 parameters

1. Conditioner Inlet Temp

2. Conditioner Outlet Temp

3. Coal Feeder Rate

4. Primary Air Flow

5. Primary Air Split

6. System Secondary Air Flow Total


7. Secondary Air Flow

8. Secondary Air Split

9. Tertiary Air Split

10. Total Combined Air Flow

11. Supplementary Fuel Flow

12. Main Flame Intensity

12 data files, 12 parameters:
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Results
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• RIT Research Computing systems used to gather results.


• Compute nodes heterogeneous:


• 10 core 2.3 GHz Intel Xeon CPU E5-2650 v3


• 32 core 2.6 GHz AMD Opteron Processor 6282 SE


• 48 core 2.5 GHz AMD Opteron Processor 6180 SEs


• All compute nodes ran RedHat Enterprise Linux 6.10.


• EXALT runs utilized different compute notes as 
determined by RC's SLURM scheduler.

Computing Environment



EvoStar: EvoApplications 
April 26, 2019

• EXALT compared to traditional RNNs (1-layer FF, 2-layer 
FF, 1-layer LSTM, 2-layer lSTM, Jordan, Elman) to predict 
Flame Intensity


• K-fold cross validation (1 file per fold), 10 repeats per fold 
- 720 runs for each of the fixed RNN types.


• K-fold cross validation (1 file per fold), 10 repeats per fold 
- 120 runs for EXALT.


• Fixed RNNs trained for 1000 epochs.

• EXALT trained 2000 RNNs for 10 epochs each, distributed 

across 20 processes -- compute was expected to be 
somewhat comparable.


• 12 folds x 10 repeats x 2000 RNNs = 2.4m RNNs trained!

EXALT Experimental Setup
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• Min/avg/max mean squared error while training for each 
fold.

1 Layer Feed Forward
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2 Layer Feed Forward

• Min/avg/max mean squared error while training for each 
fold.
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1 Layer LSTM

• Min/avg/max mean squared error while training for each 
fold.
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2 Layer LSTM

• Min/avg/max mean squared error while training for each 
fold.
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Jordan

• Min/avg/max mean squared error while training for each 
fold.
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Elman

• Min/avg/max mean squared error while training for each 
fold.
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EXALT

• Min/avg/max mean squared error while training for each 
fold.
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• Significantly more reliable than the fixed architectures.

• Wallclock time was faster in terms of training time, 2-10x 

faster than the fixed RNNs.

• EXALT's RNNs were smaller (see above).


• However, some of the fixed RNNs did find slightly better 
performance in the best case across all the repeats.

EXALT Results
Nodes Edges Rec. Edges Weights

One Layer FF 25 156 0 181
Two Layer FF 37 300 0 337
Jordan RNN 25 156 12 193
Elman RNN 25 156 144 325
One Layer LSTM 25 156 0 311
Two Layer LSTM 37 300 0 587
EXALT Best Avg. 14.7 26.2 14.6 81.5

Table 2. Number of nodes, edges, recurrent edges and trainable connections (weights)
in each evaluated network type, and the average values for the best evolved RNNs by
EXALT.

Genome Fitness: 2.99765% MAE
input 2
depth 0

Burner-Conditioner_Inlet_Temp
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depth 0

Burner-Conditioner_Outlet_Temp

output 13
depth 1

Burner-Main_Flm_Int

node 31
depth 0.737654

node 458
depth 0.784587

input 10
depth 0

Burner-Primary_Air_Flow

node 14
depth 0.5

input 9
depth 0

Burner-Primary_Air_Split

input 8
depth 0

Burner-System_Secondary_Air_Flow_Total

input 6
depth 0

Burner-Secondary_Air_Split

input 5
depth 0

Burner-Tertiary_Air_Split

node 16
depth 0.5

input 4
depth 0

Burner-Total_Comb_Air_Flow

input 3
depth 0

Burner-Supp_Oil_Flow

input 1
depth 0

Burner-Main_Flm_Int

Genome Fitness: 2.95717% MAE
input 12
depth 0

Burner-Conditioner_Inlet_Temp

input 1
depth 0

Burner-Conditioner_Outlet_Temp

output 13
depth 1

Burner-Main_Flm_Int

node 31
depth 0.567021

input 11
depth 0

Burner-Coal_Feeder_Rate

node 49
depth 0.656638

input 10
depth 0

Burner-Primary_Air_Flow

node 21
depth 0.303324

node 191
depth 0.668649

input 9
depth 0

Burner-Primary_Air_Split

node 25
depth 0.98803

input 8
depth 0

Burner-System_Secondary_Air_Flow_Total

input 7
depth 0

Burner-Secondary_Air_Flow

input 6
depth 0

Burner-Secondary_Air_Split

input 5
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Burner-Tertiary_Air_Split

input 3
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Burner-Supp_Oil_Flow

input 2
depth 0

Burner-Main_Flm_Int

node 55
depth 0.151662

Fig. 3. Two examples of the best RNNs evolved by EXALT. Orange nodes are LSTM
neurons, while black ndoes are regular neurons. Dotted lines represet recurrent connec-
tions, while solid lines represent feed forward connections. Colors of the lines represent
the magnitude of the weights weights (-1.0 is the most blue to 1.0 being the most red).
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• RNN evolved on burners 1-10 used to predict unseen 
data from burner 11.

Recent Prediction Example
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• Example evolved RNN from new version of EXALT, which also allows 
Jordan, Elman, GRU, MGU, UGRNN, and Delta-RNN neurons in 
addition to LSTM neurons (see upcoming GECCO paper).

Recent Evolved Network (EXAMM)
Genome Fitness: 4.44739% MAE

input 2
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input 3
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Coal_Feeder_Rate

output 13
depth 1
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jordan node #186
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GRU node #25
depth 0.52009
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UGRNN node #226
depth 0.854672

jordan node #298
depth 0.932413

feed_forward node #70
depth 0.95008

input 4
depth 0

Primary_Air_Flow

LSTM node #14
depth 0.0288821

GRU node #21
depth 0.766997

elman node #62
depth 0.916673

input 5
depth 0

Primary_Air_Split

GRU node #130
depth 0.116685

UGRNN node #109
depth 0.295932

feed_forward node #23
depth 0.588971

elman node #267
depth 0.740309

GRU node #83
depth 0.814321

input 6
depth 0

System_Secondary_Air_Flow_Total

input 7
depth 0

Secondary_Air_Flow

UGRNN node #208
depth 0.5

UGRNN node #209
depth 0.5

MGU node #79
depth 0.782519

input 8
depth 0

Secondary_Air_Split

input 9
depth 0

Tertiary_Air_Split

delta node #291
depth 0.397243

input 10
depth 0

Total_Comb_Air_Flow

LSTM node #236
depth 0.5

LSTM node #237
depth 0.5

input 11
depth 0

Supp_Oil_Flow

input 12
depth 0

Main_Flm_Int

elman node #317
depth 0.0583425

elman node #318
depth 0.147966

delta node #292
depth 0.294486

MGU node #213
depth 0.103154
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• Investigating other cell structures (GRU, MGU, UGRNN, Delta-
RNN) and island parallelism for speciation -- results at GECCO! [1]


• Can we optimize hyperparameters concurrently with architecture? 
Have had some success evolving CNNs this way [2].


• Can we evolving memory cell structures AND architecture 
simultaneously?


• Testing multiple activation functions (tanh mostly used in this 
work)


• Layer-level mutations to further speed evolution

• Self-tuning mutation/crossover rates?


[1] Travis Desell. Developing a Volunteer Computing Project to Evolve Convolutional 
Neural Networks and Their Hyperparameters. The 13th IEEE International Conference on 
eScience (eScience 2017). Auckland, New Zealand. October 24-27 2017.

[2] Alex Ororbia, AbdElRahman ElSaid, and Travis Desell. Investigating Recurrent Neural 
Network Memory Structures using Neuro-Evolution. The Genetic and Evolutionary 
Computation Conference (GECCO 2019). Prague, Czech Republic. July 13-17, 2019.

Future Work



EvoStar: EvoApplications 
April 26, 2019

Discussion/Questions?


Source code and Data: https://github.com/travisdesell/exact
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