
Travis Desell (tjdvse@rit.edu)
Associate Professor

Graduate Program Director: Data Science
Department of Software Engineering

Other Authors:
AbdElRahman ElSaid (PhD GRA)

Steven Benson, Shuchita Patwardhan, David Stadem (Microbeam Technologies, Inc.)

Evolving Recurrent Neural Networks for Time
Series Data Prediction of Coal Plant Parameters

Evostar 2019:
The 22nd International Conference on the Applications of Evolutionary

Computation

mailto:tjdvse@rit.edu

EvoStar: EvoApplications
April 26, 2019

Overview
• What is Neuro-Evolution?

• Background:

• Recurrent Neural

Networks for Time
Series Prediction

• EXALT:

• NEAT Innovations

• Edge and Node

Mutations

• Crossover

• Distributed Neuro-

Evolution

• Results

• Performance vs.

Traditional

• EXALT Results

• Future Work

• Questions

EvoStar: EvoApplications
April 26, 2019

Motivation

EvoStar: EvoApplications
April 26, 2019

What is Neuro-Evolution?

• Most people use human-designed ANNs, selecting from a
few architectures that have done will in the literature.

• No guarantees these are most optimal.

• Applying evolutionary strategies to artificial neural
networks (ANNs):

• EAs to train ANNs (weight selection)

• EAs to design ANNs (what architecture is best?)

• Hyperparameter optimization (what parameters do we

use for our backpropagation algorithm)

EvoStar: EvoApplications
April 26, 2019

Background

EvoStar: EvoApplications
April 26, 2019

Recurrent Neural Networks

Recurrent Neural Networks can be extremely
challenging to train due to the exploding/
vanishing gradients problem. In short, when
training a RNN over a time series (via
backpropagation through time), it needs to
be completely unrolled over the time series.

For the simple example above (blue arrows
are forward connections, red are recurrent),
backpropagating the error from time 3
reaches all the way back to input at time 0
(right). Even with this extremely simple RNN,
we end up having an extremely deep
network to train.

Input
time 0

Hidden
Node 1

Hidden
Node 2

Output
time 0

Input
time 1

Hidden
Node 1

Hidden
Node 2

Output
time 1

Input
time 2

Hidden
Node 1

Hidden
Node 2

Output
time 2

Input
time 3

Hidden
Node 1

Hidden
Node 2

Output
time 3

Input Hidden
Node 1

Hidden
Node 2 Output

...

EvoStar: EvoApplications
April 26, 2019

Classification vs. Time Series Data Prediction
RNNs are perhaps more commonly used for classification (and have
been mixed with CNNs for image identification). This involves outputs
being fed through a softmax layer which results in probabilities for the
input being a particular class. The error minimized is for the output
being an incorrect class:

RNNs can also be used for time series data prediction, however in this
case the RNN is predicting an exact value of a time series, some
number of time steps in the future. The error being minimized is
typically the mean squared error (1) or mean absolute error (2). This is
an important distinction.

Using ACO to Optimize LSTM Recurrent Neural Networks GECCO ’18, July 15–19, 2018, Kyoto, Japan

t-9 t-1 t

Current input
Input lag
Actual vibration
Hidden layer

t+10

Figure 4: Nonlinear Output Error inputs neural network.
This networkwas updated to utilize 10 seconds of input data.

t-9 t-1 t

Current input
Input lag
Prediction
Hidden layer

t+9t+1t t+10

Figure 5: Nonlinear AutoRegressive with eXogenous inputs
neural network. This network was updated to utilize 10 sec-
onds of input data, along with the previous 10 predicted out-
put values.

t-9 t-1 t

Current input
Input lag
Prediction
Hidden layer

t+9

Error
Actual vibration

t+1t t+10

Figure 6: Nonlinear Box-Jenkins inputs neural network.
This networkwas updated to utilize 10 seconds of input data,
along with the future output and error values. Due to requir-
ing future knowledge, it is not possible to utilize this net-
work in an online fashion.

indicative of a case of vanishing gradients. Accordingly, the study
allowed for the recurrent weights to be considered in the gradient
calculations in order to update the weights with respect to the cost
function output.

5.2.3 Nonlinear Box-Jenkins (NBJ) Inputs Neural Network: The
structure of the NBJ is depicted in Figure 6. As previously noted,
this network is not feasible for prediction past one time step in
the future in an online manner, as it requires the actual prediction
value and error between it and the predicted value to be fed back
into the network. However, as this work delt with o�ine data, the
actual future vibration values, error, and the output were all fed to
the network along with the current instance parameters and lag
inputs. As in the other networks, the values for the previous 10
time steps were also utilized.

Table 1: K-Fold Cross Validation Results

Prediction Errors (MAE)
LSTM NOE NARX NBJ ACO

Subsample 1 8.34% 10.6% 8.13% 8.40% 7.80%
Subsample 2 4.05% 6.96% 6.08% 7.34% 3.70%
Subsample 3 6.76% 16.8% 11.2% 13.6% 3.49%

Mean 0.0638 0.1145 0.0847 0.0977 0.0501
Std. Dev. 0.0217 0.0497 0.0258 0.0333 0.0245
5.3 Error Function
For all the networks studied in this work, Mean Squared Error (MSE)
(shown in Equation 1) was used as an error measure for training,
as it provides a smoother optimization surface for backpropagation
than mean average error. Mean Absolute Error (MAE) (shown in
Equation 2) was used as a �nal measure of accuracy for the three
architectures, as because the parameters were normalized between
0 and 1, the MAE is also the percentage error.

Error =
0.5 ⇥Õ(Actual V ib � Predicted Vib)2

Testin� Seconds
(1)

Error =

Õ[ABS(Actual V ib � Predicted Vib)]
Testin� Seconds

(2)

5.4 Machine Speci�cations
Python’s Theano Library [23] was used to implement the neural
networks and MPI for Python [3] and was used to run the ACO op-
timization on a high performance computing cluster. The cluster’s
operating system was Red Hat Enterprise Linux (RHEL) 7.2, and
had 31 nodes, each with 8 cores (248 cores in total) and 64GBs RAM
(1948 GB in total). The interconnect was 10 gigabit (GB) In�niBand.

6 RESULTS
The ACO algorithm was run for 1000 iterations using 200 ants. The
networks were allowed to train for 575 epochs to learn and for
the error curve to �atten. The minimum value for the pheromones
were 1 and the maximum was 20. The population size was equal to
number number of iterations in the ACO process, i.e., the population
size was also 1000. Each run took approximately 4 days.

A dataset of 57 �ights was divided into 3 subsamples, each con-
sisting of 19 �ights. The subsamples were used to cross validate the
results by examining combations utilizing two of the subsamples
as the training data set and the third as the testing set. Subsamples
1, 2 and 3 consisted of 23,371, 31,207 and 25,011 seconds of �ight
data, respectively.

These subsamples were used to train the NOE, NARX, NBH, base
architecture and the ACO optimized architecture. Figures 7 shows
predictions for the di�erent models over a selection of test �ights,
and Figure 8 shows predictions an single uncompressed (higher
resolution) test �ight. Table 1 compares these models to the base
architecture (LSTM) and the ACO optimized architecture (ACO).

6.1 NOE, NARX, and NBJ Results
Somewhat expectedly, the NOE model performed the worst with
with a mean error of 11.45% (� = 0.0497). The NBJ model performed
better than the NOE model with a mean error of 9.77% (� = 0.0333),

EvoStar: EvoApplications
April 26, 2019

EXALT

EvoStar: EvoApplications
April 26, 2019

EXALT
• Neuro-Evolution algorithms based of Neuro-Evolution of

Augmenting Topologies (NEAT) [1].

• Evolutionary eXploration of Augmenting LSTM Topologies
(EXALT):

• Progressively grows RNNs: nodes can be simple neurons

or LSTMs.

• Parallel in nature.

• Node-level mutations not present in NEAT.

• No speciation.

• Generated RNNs are trained via backpropagation.

• Weights pre-initialized from parents (Lamarckian evolution).

[1] Kenneth Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary computation: 10, 2. (2002), 99–127.

EvoStar: EvoApplications
April 26, 2019

NEAT Innovation Numbers

• In neuro-evolution, we need to perform crossover/
recombination between progressively grown neural networks.

• How do we know which edges are the "same" in the above
neural networks?

Input

Output

Hidden Hidden

Input

Output

Hidden Hidden

NN 1 NN 2

EvoStar: EvoApplications
April 26, 2019

NEAT Innovation Numbers

• NEAT assigns a unique "innovation number" to each newly generated
edge.

• This allows NN graphs to be compared in linear (assuming edges are
sorted according to innovation numbers) time - otherwise NN graphs
could be ambiguous and very computationally expensive to compare.

Input

Output

Hidden Hidden

Input

Output

Hidden Hidden

NN 1 NN 2

1

2

3

4

3

4

1

2

EvoStar: EvoApplications
April 26, 2019

NEAT Innovation Numbers

• In the above example, the edges on the left of NN 1
correspond to the same edges on the right of NN 2.

Input

Output

Hidden Hidden

Input

Output

Hidden Hidden

NN 1 NN 2

1

2

3

4

3

4

1

2

EvoStar: EvoApplications
April 26, 2019

NEAT Innovation Numbers

• However, a similar structure may have been generated evolutionarily with
"different" edges - in this case they will have different innovation numbers.

• This way we know the edges on the right of NN 2 are the same as those on
the left of NN 1, but the other edges occurred through a different
evolutionary process and should be treated differently.

Input

Output

Hidden Hidden

Input

Output

Hidden Hidden

NN 1 NN 2

1

2

3

4

5

6

1

2

EvoStar: EvoApplications
April 26, 2019

Edge and Node Mutations

EvoStar: EvoApplications
April 26, 2019

Edge Mutations: Split Edge

• EXALT always starts with a minimal feed forward network (top
left) with input nodes for each input parameter fully connected
to output nodes for each output parameter (no hidden nodes).

• The edge between Input 1 and Output 1 is selected to be split.
A new node with innovation number (IN) 1 is created.

Input 1

Input 2

Input 3

Output
1

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Split Edge

EvoStar: EvoApplications
April 26, 2019

Edge Mutations: Add Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Add Edge

• Input 3 and Node IN 1 are selected to have an edge
between them added.

EvoStar: EvoApplications
April 26, 2019

Edge Mutations: Enable Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Enable Edge
Input 1

Input 2

Input 3

Output
1

Node
IN 1

• The edge between Input 3 and Output 1 is enabled.

EvoStar: EvoApplications
April 26, 2019

Edge Mutations: Add Recurrent Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Add Recurrent
Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

• A recurrent edge is added between Output 1 and Node IN
1.

EvoStar: EvoApplications
April 26, 2019

Edge Mutations: Disable Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Disable Edge
Input 1

Input 2

Input 3

Output
1

Node
IN 1

• The edge between Input 3 and Output 1 is disabled.

EvoStar: EvoApplications
April 26, 2019

Node Mutations: Add Node

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Add Node
Input 1

Input 2

Input 3

Output
1

Node
IN 1

Node
IN 2

Node
IN 2

• A node with IN 2 is selected to be added at a depth
between the inputs & Node IN 1. Edges are randomly
added to Input 2 and 3, and Node IN 1 and Output 1.

EvoStar: EvoApplications
April 26, 2019

Node Mutations: Split Node

Input 1

Input 2

Input 3

Output
1

Split Node

Node
IN 2

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

• Node IN 1 is selected to be split. It is disabled with its
input/output edges. It is split into Nodes IN 3 and 4,
which get half the inputs. Both have an output edge to
Output 1 since there was only one output from Node IN 1.

EvoStar: EvoApplications
April 26, 2019

Node Mutations: Merge Node

Input 1

Input 2

Input 3

Output
1

Merge Node

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Input 1

Input 2

Input 3

Output
1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

• Node IN 2 and 3 are selected for a merge (input/output
edges are disabled). Node IN 5 is created with edges
between all their inputs/outputs.

EvoStar: EvoApplications
April 26, 2019

Node Mutations: Enable Node

Input 1

Input 2

Input 3

Output
1

Enable Node

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

Input 1

Input 2

Input 3

Output
1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

• Node IN 1 is selected to be enabled, along with all its
input and output edges.

EvoStar: EvoApplications
April 26, 2019

Node Mutations: Disable Node

Input 1

Input 2

Input 3

Output
1

Disable Node

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

Input 1

Input 2

Input 3

Output
1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

• Node IN 5 is selected to be disabled, along with all its
input and output edges.

EvoStar: EvoApplications
April 26, 2019

Clone

Input 1

Input 2

Input 3

Output
1

Clone

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

• Clone makes no modifications at all to the parent,
allowing it to continue with the back propagation process.

Input 1

Input 2

Input 3

Output
1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

EvoStar: EvoApplications
April 26, 2019

Crossover

EvoStar: EvoApplications
April 26, 2019

Crossover

Input 1

Input 2

Input 3

Output
1

Crossover

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Input 1

Input 2

Input 3

Output
1

Node
IN 3

Node
IN 1

Worse
Parent

Better
Parent

Input 1

Input 2

Input 3

Output
1

Node
IN 3

Node
IN 4

Node
IN 1

• Crossover creates a child RNN using all
reachable nodes and edges from two parents.
A node or edge is reachable if there is a path of
enabled nodes and edges from an input node
to it as well as a path of enabled nodes and
edges from it to an output node, i.e., a node or
edge is reachable if it actually affects the RNN.

EvoStar: EvoApplications
April 26, 2019

Crossover: Lamarckian Weight Initialization

• Initial RNN weights generated uniformly at random
(between -0.5 and 0.5).

• New components (nodes/edges) are generated a normal
distribution based on the average, standard deviation,
and variance of the parents’ weights.

EvoStar: EvoApplications
April 26, 2019

Crossover: Lamarckian Weight Initialization

• In crossover where a node/edge exists in both parents we
recombine the weights. The child weights, wc, are
generated by recombining the parents’ weights:

wc = r(wp2 - wp1) + wp1

• Where r is a random number -0.5 <= r <= 1.5, where wp1
is the weight from the more fit parent, and wp2 is the
weight from the less fit parent. We can change r's bounds
to prefer weights near one parent over the other.

wp2

wp1

weight range

EvoStar: EvoApplications
April 26, 2019

Distributed Neuro-Evolution

EvoStar: EvoApplications
April 26, 2019

Synchronous/Parallel EAs

• Traditional EAs generate an entire population at a time, evaluate the
fitness of every individual and then generate the next population.

• This has problems in that if the population size is not evenly
divisible by the number of processors available there is wasted
computation. Also, the population size can't be less than the
number of processors.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

processor 1

processor 2

processor 3

fitness evaluation fitness evaluation fitness evaluation

EvoStar: EvoApplications
April 26, 2019

Synchronous/Parallel EAs

• Things are even more challenging if the fitness evaluation
times of the individuals are different or even worse
nondeterministic. Lots of waiting and unused cycles.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

processor 1

processor 2

processor 3

fitness evaluation fitness evaluation fitness evaluation

5 sec
20 sec

3 sec

10 sec
15 sec

14 sec

20 sec

5 sec
2 sec

3 sec

18 sec
4 sec

11 sec

1.5 sec

EvoStar: EvoApplications
April 26, 2019

Master Process

Asynchronous EAs

• The Master process keeps a "steady state" populuation.

• Workers independently request work (master generates new RNNs

to train), calculate fitness and report results.

• No worker waits on another worker - naturally load balanced.

Workers can even request a queue of work to reduce latency.

• Number of worker processes is independent of population size.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Worker Process 1
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

Worker Process 2
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

Worker Process N
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

...

EvoStar: EvoApplications
April 26, 2019

Master Process

Asynchronous EAs

• Asynchronous EAs can scale to millions of processors, whereas
synchronous EAs are very limited [1].

[1] Travis Desell, David P. Anderson, Malik Magdon-Ismail, Heidi Newberg, Boleslaw
Szymanski and Carlos A. Varela. An Analysis of Massively Distributed Evolutionary
Algorithms. In the Proceedings of the 2010 IEEE Congress on Evolutionary Computation
(IEEE CEC 2010). pages 1-8. Barcelona, Spain. July 2010.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Worker Process 1
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

Worker Process 2
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

Worker Process N
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

...

EvoStar: EvoApplications
April 26, 2019

Data Sets

EvoStar: EvoApplications
April 26, 2019

Data Sets: Coal Plant

• Parameters are non-seasonal and correlated/dependent.

• Predicting Main Flame Intensity

• Data made public on github repo. Pre-normalized and anonymized.

• 12 coal plant burners from a DOE award with Microbeam

Technologies, Inc.

• 10 days long

• per minute readings

• 12 parameters

1. Conditioner Inlet Temp

2. Conditioner Outlet Temp

3. Coal Feeder Rate

4. Primary Air Flow

5. Primary Air Split

6. System Secondary Air Flow Total

7. Secondary Air Flow

8. Secondary Air Split

9. Tertiary Air Split

10. Total Combined Air Flow

11. Supplementary Fuel Flow

12. Main Flame Intensity

12 data files, 12 parameters:

EvoStar: EvoApplications
April 26, 2019

Results

EvoStar: EvoApplications
April 26, 2019

• RIT Research Computing systems used to gather results.

• Compute nodes heterogeneous:

• 10 core 2.3 GHz Intel Xeon CPU E5-2650 v3

• 32 core 2.6 GHz AMD Opteron Processor 6282 SE

• 48 core 2.5 GHz AMD Opteron Processor 6180 SEs

• All compute nodes ran RedHat Enterprise Linux 6.10.

• EXALT runs utilized different compute notes as
determined by RC's SLURM scheduler.

Computing Environment

EvoStar: EvoApplications
April 26, 2019

• EXALT compared to traditional RNNs (1-layer FF, 2-layer
FF, 1-layer LSTM, 2-layer lSTM, Jordan, Elman) to predict
Flame Intensity

• K-fold cross validation (1 file per fold), 10 repeats per fold
- 720 runs for each of the fixed RNN types.

• K-fold cross validation (1 file per fold), 10 repeats per fold
- 120 runs for EXALT.

• Fixed RNNs trained for 1000 epochs.

• EXALT trained 2000 RNNs for 10 epochs each, distributed

across 20 processes -- compute was expected to be
somewhat comparable.

• 12 folds x 10 repeats x 2000 RNNs = 2.4m RNNs trained!

EXALT Experimental Setup

EvoStar: EvoApplications
April 26, 2019

• Min/avg/max mean squared error while training for each
fold.

1 Layer Feed Forward

EvoStar: EvoApplications
April 26, 2019

2 Layer Feed Forward

• Min/avg/max mean squared error while training for each
fold.

EvoStar: EvoApplications
April 26, 2019

1 Layer LSTM

• Min/avg/max mean squared error while training for each
fold.

EvoStar: EvoApplications
April 26, 2019

2 Layer LSTM

• Min/avg/max mean squared error while training for each
fold.

EvoStar: EvoApplications
April 26, 2019

Jordan

• Min/avg/max mean squared error while training for each
fold.

EvoStar: EvoApplications
April 26, 2019

Elman

• Min/avg/max mean squared error while training for each
fold.

EvoStar: EvoApplications
April 26, 2019

EXALT

• Min/avg/max mean squared error while training for each
fold.

EvoStar: EvoApplications
April 26, 2019

• Significantly more reliable than the fixed architectures.

• Wallclock time was faster in terms of training time, 2-10x

faster than the fixed RNNs.

• EXALT's RNNs were smaller (see above).

• However, some of the fixed RNNs did find slightly better
performance in the best case across all the repeats.

EXALT Results
Nodes Edges Rec. Edges Weights

One Layer FF 25 156 0 181
Two Layer FF 37 300 0 337
Jordan RNN 25 156 12 193
Elman RNN 25 156 144 325
One Layer LSTM 25 156 0 311
Two Layer LSTM 37 300 0 587
EXALT Best Avg. 14.7 26.2 14.6 81.5

Table 2. Number of nodes, edges, recurrent edges and trainable connections (weights)
in each evaluated network type, and the average values for the best evolved RNNs by
EXALT.

Genome Fitness: 2.99765% MAE
input 2
depth 0

Burner-Conditioner_Inlet_Temp

input 12
depth 0

Burner-Conditioner_Outlet_Temp

output 13
depth 1

Burner-Main_Flm_Int

node 31
depth 0.737654

node 458
depth 0.784587

input 10
depth 0

Burner-Primary_Air_Flow

node 14
depth 0.5

input 9
depth 0

Burner-Primary_Air_Split

input 8
depth 0

Burner-System_Secondary_Air_Flow_Total

input 6
depth 0

Burner-Secondary_Air_Split

input 5
depth 0

Burner-Tertiary_Air_Split

node 16
depth 0.5

input 4
depth 0

Burner-Total_Comb_Air_Flow

input 3
depth 0

Burner-Supp_Oil_Flow

input 1
depth 0

Burner-Main_Flm_Int

Genome Fitness: 2.95717% MAE
input 12
depth 0

Burner-Conditioner_Inlet_Temp

input 1
depth 0

Burner-Conditioner_Outlet_Temp

output 13
depth 1

Burner-Main_Flm_Int

node 31
depth 0.567021

input 11
depth 0

Burner-Coal_Feeder_Rate

node 49
depth 0.656638

input 10
depth 0

Burner-Primary_Air_Flow

node 21
depth 0.303324

node 191
depth 0.668649

input 9
depth 0

Burner-Primary_Air_Split

node 25
depth 0.98803

input 8
depth 0

Burner-System_Secondary_Air_Flow_Total

input 7
depth 0

Burner-Secondary_Air_Flow

input 6
depth 0

Burner-Secondary_Air_Split

input 5
depth 0

Burner-Tertiary_Air_Split

input 3
depth 0

Burner-Supp_Oil_Flow

input 2
depth 0

Burner-Main_Flm_Int

node 55
depth 0.151662

Fig. 3. Two examples of the best RNNs evolved by EXALT. Orange nodes are LSTM
neurons, while black ndoes are regular neurons. Dotted lines represet recurrent connec-
tions, while solid lines represent feed forward connections. Colors of the lines represent
the magnitude of the weights weights (-1.0 is the most blue to 1.0 being the most red).

EvoStar: EvoApplications
April 26, 2019

• RNN evolved on burners 1-10 used to predict unseen
data from burner 11.

Recent Prediction Example

EvoStar: EvoApplications
April 26, 2019

• Example evolved RNN from new version of EXALT, which also allows
Jordan, Elman, GRU, MGU, UGRNN, and Delta-RNN neurons in
addition to LSTM neurons (see upcoming GECCO paper).

Recent Evolved Network (EXAMM)
Genome Fitness: 4.44739% MAE

input 2
depth 0

Conditioner_Outlet_Temp

input 3
depth 0

Coal_Feeder_Rate

output 13
depth 1

Main_Flm_Int

jordan node #186
depth 0.296346

GRU node #25
depth 0.52009

elman node #210
depth 0.520829

LSTM node #153
depth 0.603028

UGRNN node #226
depth 0.854672

jordan node #298
depth 0.932413

feed_forward node #70
depth 0.95008

input 4
depth 0

Primary_Air_Flow

LSTM node #14
depth 0.0288821

GRU node #21
depth 0.766997

elman node #62
depth 0.916673

input 5
depth 0

Primary_Air_Split

GRU node #130
depth 0.116685

UGRNN node #109
depth 0.295932

feed_forward node #23
depth 0.588971

elman node #267
depth 0.740309

GRU node #83
depth 0.814321

input 6
depth 0

System_Secondary_Air_Flow_Total

input 7
depth 0

Secondary_Air_Flow

UGRNN node #208
depth 0.5

UGRNN node #209
depth 0.5

MGU node #79
depth 0.782519

input 8
depth 0

Secondary_Air_Split

input 9
depth 0

Tertiary_Air_Split

delta node #291
depth 0.397243

input 10
depth 0

Total_Comb_Air_Flow

LSTM node #236
depth 0.5

LSTM node #237
depth 0.5

input 11
depth 0

Supp_Oil_Flow

input 12
depth 0

Main_Flm_Int

elman node #317
depth 0.0583425

elman node #318
depth 0.147966

delta node #292
depth 0.294486

MGU node #213
depth 0.103154

EvoStar: EvoApplications
April 26, 2019

• Investigating other cell structures (GRU, MGU, UGRNN, Delta-
RNN) and island parallelism for speciation -- results at GECCO! [1]

• Can we optimize hyperparameters concurrently with architecture?
Have had some success evolving CNNs this way [2].

• Can we evolving memory cell structures AND architecture
simultaneously?

• Testing multiple activation functions (tanh mostly used in this
work)

• Layer-level mutations to further speed evolution

• Self-tuning mutation/crossover rates?

[1] Travis Desell. Developing a Volunteer Computing Project to Evolve Convolutional
Neural Networks and Their Hyperparameters. The 13th IEEE International Conference on
eScience (eScience 2017). Auckland, New Zealand. October 24-27 2017.

[2] Alex Ororbia, AbdElRahman ElSaid, and Travis Desell. Investigating Recurrent Neural
Network Memory Structures using Neuro-Evolution. The Genetic and Evolutionary
Computation Conference (GECCO 2019). Prague, Czech Republic. July 13-17, 2019.

Future Work

EvoStar: EvoApplications
April 26, 2019

Discussion/Questions?

Source code and Data: https://github.com/travisdesell/exact

Acknowledgements: This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of Advanced
Combustion Systems under Award Number #FE0031547.

https://github.com/travisdesell/exact

