Investigating Recurrent Neural Network
Memory Structures using Neuro-Evolution

Travis Desell (fidvse@rit.edu)

Associate Professor
Department of Software Engineering

Co-Authors:
AbdEIRahman ElSaid (PhD GRA)
Alex Ororbia (Assistant Professor, RIT Computer Science)

Collaborators:
Steven Benson, Shuchita Patwardhan, David Stadem (Microbeam Technologies, Inc.)
James Higgins, Mark Dusenbury, Brandon Wild (University of North Dakota)

R-I-T

ROCHESTER INSTITUTE OF TECHNOLOGY

mailto:tjdvse@rit.edu

Overview

e \What is Neuro-Evolution? e Distributed Neuro-
Evolution
e Background:
e Recurrent Neural e Results
Networks for Time
Series Prediction e Future Work
e Recurrent Memory
Cells e Discussion
o EXAMM:

e NEAT Innovations

e Edge and Node
Mutations

e Crossover

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Motivation

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Neuro-Evolution

* Applying evolutionary strategies to artificial neural
networks (ANNSs):

e EAs to train ANNs (weight selection)

e EAs to design ANNs (what architecture is best?)

» Hyperparameter optimization (what parameters do we
use for our backpropagation algorithm)

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Neuro-Evolution for Recurrent Neural Networks

* Most people use human-designed ANNSs, selecting from a
few architectures that have done well in the literature.

* No guarantees these are most optimal (e.g., in size,
predictive ability, generalizability, robustness, etc).

* Recurrent edges can go back farther in time than the
previous time step -- dramatically increases the search
space for RNN architectures.

 With so many memory cell structures and architectures to
choose from, which are best? What cells and
architectures perform best, does this change across data
sets and why?

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Neuro-Evolution

* Applying evolutionary strategies to artificial neural
networks (ANNSs):
 EAs to train ANNs (weight selection)
 EAs to design ANNs (what architecture is best?)
* Hyperparameter optimization (what parameters do we
use for our backpropagation algorithm)

 Using NE to better understand and guide ML: what
structures and architectures are evolutionarily
selected and why?

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Background

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Recurrent Neural Networks

Input Hidden Hidden Output Input Hidden | | Hidden Output
Node 1 Node 2 time 0 Node 1 Node 2 time 0
Recurrent Neural Networks can be extremely /
challenging to train due to the exploding/ Input Hidden Hidden Output
vanishing gradients problem. In short, when time 1 Node 1 Node 2 time 1
training a RNN over a time series (via
backpropagation through time), it needs to /
be completely unrolled over the time series.
Input Hidden Hidden Output
For the simple example above (blue arrows time 2 Node 1 Node 2 time 2
are forward connections, red are recurrent),
backpropagating the error from time 3 /
reaches all the way back to input at time 0O , ,
(right). Even with this extremely simple RNN, I,an't Hidden —> Hidden QUtPUt
we end up having an extremely deep time 3 Node 1 Node 2 time 3

network to train.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

R I T \ Rochester Institute of Technology

Recurrent Neural Networks

Inbut Hidden Hidden Outout Input Hidden | | Hidden Output

P Node 1 Node 2 P time 0 Node 1 Node 2 time 0
Traditionally, RNN connections go /4

back a single time step and to the Input Hidden Output

same or a previous node in the

time 1

., idden
Node 1 ode 2

time 1

network. —
This is not a requirement - they can Input Hiddery| |Hidden | | Output
time 2 Node . time 2

go back multiple time steps (green)
or forward in the network (orange).
However it is not as well studied due
to additional complexity and
dramatically increasing the
architectural search space.

 Node 2

Input
time 3

Hidden
Node 1

—»

. Node 2

‘Hidden

Output
time 3

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

R I T \ Rochester Institute of Technology

Classification vs. Time Series Data Prediction

RNNs are perhaps more commonly used for classification (and have
been mixed with CNNs for image identification). This involves outputs
being fed through a softmax layer which results in probabilities for the
iInput being a particular class. The error minimized is for the output
being an incorrect class:

Z .

Zkl'{zl ek

RNNs can also be used for time series data prediction, however in this
case the RNN is predicting an exact value of a time series, some
number of time steps in the future. The error being minimized is
typically the mean squared error (1) or mean absolute error (2). This is
an important distinction.

o(z); forj=1, ..., K

0.5 %X Y (Actual Vib — Predicted Vib)?
Error = . (1)
Testing Seconds

> [ABS(Actual Vib — Predicted Vib)]
Error = . (2)
Testing Seconds

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Memory Cell Structures - Simple Neuron

- "Simple" neurons are the
basic neural network
building block. Inputs are

summed, and activation
Input function is applied and the
(sum) g output is feed forward to
- other neurons.

l

T - Simple (and any other
fetvation . memory cell structure) can
_ (tanh, : also have recurrent edges (in
sigmoid, --) red) added through the
l evolutionary process. These

can loop back to the same
: neuron (e.g., an Elman-like
Output connection) or to any other
neuron in the network
(shallower, same layer or
deeper).

A v 4

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Memory Cell Structures - LSTM

input prev cell

e <t e\ i < \
O N OB O e oS o BN O ==
o

w5 o
° forget gate

input gate

Long Short-Term Memory (LSTM) are perhaps the
most well known RNN memory cell, first proposed in
1997 by Hochreiter and Schmidhuber.

output gate

This work uses the more modern version of LSTM, cel
with peephole connections as well as omitting the /
output function (identity instead of tanh) [3]. This ety

cellular structure, while conceptually appealing, is

computationally complex with 11 trainable o
parameters (blue diamonds).

f=o(W_f*x + U_f*c_prev * f_bias)

[1] Felix A. Gers; Jiirgen Schmidhuber; Fred Cummins (2000). Learning to Forget: Continual e
Prediction with LSTM. Neural Computation. 12 (10): 2451-2471. 0= O(W_o7x + U ofc prev ¥ o_bias)

c=f*c_prev+i* tanh(W_c*x + c_bias)

h=o0%*c
The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Memory Cell Structures - GRU

Gated recurrent units (GRUSs)
were first introduced in 2014 by
Kyunghyun Cho et al. [2], which
are similar to LSTM cells except
without an output gate. As such
it requires fewer trainable
parameters than an LSTM (9).

[2] Cho, Kyunghyun; van Merrienboer, Bart; Gulcehre,
Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk,
Holger; Bengio, Yoshua (2014). Learning Phrase
Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv:1406.1078

z = 0(zw*X + zu*h_prev * z_bias)

r = o(rw*x + lu*h_prev * r_bias)

h = z*h_prev + (1-z)*tanh(hw*x + hu*r*h_prev * h_bias)

'Rochester Institute of Technology

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

Memory Cell Structures - MGU

input previous output

Minimal gated units
(MGUSs) were proposed
by Zhou et al. in 2016 [3].
It is another example of
an effective recurrent cell
with a low number of
trainable parameters (6).

[3] Gou-Bing Zhou,Jianxin Wu, Chen-Lin
Zhang and Zhi-Hua Zhou. Minimal gated
unit for recurrent neural networks.
International Journal of Automation and
Computing 13.3 (2016): 226-234.

APA

f = sigmoid(fw*x + fu*h_prev * _bias) | [0ulq ¥
h = tanh(hw*x + f*hu*h_prev * h_bias)
out = (1-f)*h_prev + f*h

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Memory Cell Structures - UGRNN

input previous output

h_prev

Update gate recurrent
neural networks
(UGRNNSs) were
introduced in 2016 by
Collins et al. [4]

UGRNNSs are another
simple model with only 6
trainable parameters.

[4] Collins, Jasmine, Jascha Sohl-Dickstein,
and David Sussillo. Capacity and trainability
in recurrent neural networks. arXiv preprint
RPusbu0 arXiv:1611.09913 (2016).

g = o(gw*x + gh*h_prev * g_bias) +

¢ = tanh(cw*x + ch*h_prev * c_bias)

h = g*h_prev + (1-g)*c

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

input

dl = v¥*prev_z

d2 = input

z_hat_1 = alpha*d1*d2

z_hat_2 = betal *d1

z_hat_3 = beta2*d2

z_hat sum =z hat 1+ z hat 2 +z hat 3 + z_hat_bias

7_cap = tanh(z_hat_sum)

r = 0(d2 + r_bias)

z_1 =(1-r)*z_cap

z_ 2 =r*prev_z

z=tanh(z_1+z_2)

z

'Rochester Institute of Technology

Delta-RNN cells were
first developed by
Ororbia et al. in 2017 [5],
and have shown to have
comparable performance
to other memory cells
with fewer trainable
parameters (6).

[5] Ororbia ll, Alexander G., Tomas Mikolov,
and David Reitter. Learning simpler
language models with the differential state

framework. Neural computation 29.12
(2017): 3327-3352.

The 2019 Genetic and Evolutionary Computation Conference

Prague, Czech Republic
July 13th-17th, 2019

EXAMM: Evolutionary
eXploration of Augmenting
Memory Models

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

EXAMM

e Neuro-Evolution algorithm inspired by Neuro-Evolution of Augmenting Topologies
(NEAT) [6].

e Advancement of the earlier Evolutionary Exploration of Augmenting LSTM
Topologies (EXALT) [7]:
e Progressively grows RNNs: nodes can be simple neurons or LSTMSs.
e Parallel in nature.
e Node-level mutations not present in NEAT.
e Uses Lamarckian/Epigenetic weight initialization - child RNNs utilize weights

from their parent(s).

e Evolutionary Exploration of Augmenting Memory Models (EXAMM)
e Based on EXALT, except with a library of memory cells. Nodes can be simple,
LSTM, GRU, UGRNN, MGU, or Delta-RNNSs.

e |sland-based Parallelism.
e Mutations have further refinements from EXALT.

[6] Kenneth Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation: 10, 2. (2002), 99-127.

[7] AbdEIRahman ElSaid, Steven Benson, Shuchita Patwardhan, David Stadem, and Travis Desell. Evolving
Recurrent Neural Networks for Time Series Data Prediction of Coal Plant Parameters. The 22nd
International Conference on the Applications of Evolutionary Computation (EvoStar: EvoApps 2019).

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Edge and Node Mutations

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Edge Mutations: Split Edge

Input 1 Input 1

Split Edge

Input 2 Oujclput Input 2 OU:pUt

Input 3 Input 3

e EXAMM always starts with a minimal feed forward network (top
left) with input nodes for each input parameter fully connected
to output nodes for each output parameter (no hidden nodes).

e The edge between Input 1 and Output 1 is selected to be spilit.
A new node with innovation number (IN) 1 is created.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Input 1

Input 2

Input 3

Output

Add Edge

Node

Input 1

/' IN 1

Input 2

/

Edge Mutations: Add Edge

Output

Input 3

* |nput 3 and Node IN 1 are selected to have an edge

between them added.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology

Prague, Czech Republic
July 13th-17th, 2019

Edge Mutations: Enable Edge

Node Node
/ IN 1 IN 1
Input 1 Input 1
Enable Edge
Input 2 O”:p”t Input 2 Ou’:put
Input 3 Input 3

 The edge between Input 3 and Output 1 is enabled.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Edge Mutations: Add Recurrent Edge

Node
IN 1
Input 1 Input 1
Add Recurrent
Edge
Input 2 f Ou’:put Input 2 Oujtlput
Input 3 Input 3

* Arecurrent edge is added between Output 1 and Node IN
1.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Edge Mutations: Disable Edge

Node Node
IN 1 IN 1
Input 1 Input 1
Disable Edge
Output
Input 2 Ou’flput Input 2 u1pu
Input 3 Input 3

* The edge between Input 3 and Output 1 is disabled.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic

Rochester Institute of Technology Julv 13th-17th. 2019
uly - ;

Node Mutations: Add Node

Node
IN 1

Input 1

Input 1

Add Node

Output Output

Input 2

Input 2

Input 3 Input 3

Node Node
IN 2 IN 2

* A nodeg with IN 2 is selected to be added at a depth between the inputs & Node
IN 1. Edges are randomly added to Input 2 and 3, and Node IN 1 and Output 1.

* The number of edges added is determined by calculating the mean and variance
of the number of input and output edges for all other nodes in the network, and
selecting randomly via a normal distribution with those means/variances.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Node Mutations: Split Node

Node

W
Input 1 4 Input 1
l“ Split Node K\
Output \ Output

Input 2 ' 1 Input 2

Input 3 Input 3 x

Node Node

IN 2 IN 2 \

* Node IN 1 is selected to be spilit. It is disabled with its
input/output edges. It is split into Nodes IN 3 and 4,
which get half the inputs. Both have an output edge to
Output 1 since there was only one output from Node IN 1.

The 2019 Genetic and Evolutionary Computation Conference

2 || | Rochester Institute of Technology Prague, Czech Republic
T July 13th-17th, 2019

Node Mutations: Merge Node

Node Node
IN 1 IN 1

R\ Merge Node
\ Output
1

Input 2 \
Input 3

Input 1

Input 1

Input 2

Input 3

\ IN 4

e Node IN 2 and 3 are selected for a merger (input/output
edges are disabled). Node IN 5 is created with edges
between all their inputs/outputs.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Node Mutations: Enable Node

Node

IN 1
Input 1 Input 1
Enable Node \
. Output

Input 2 NPUt 2 ¥\~ ' "
\ /T

Input 3
No ;\ /
IN 1 NOde

Node
IN5

Input 3

* Node IN 1 is selected to be enabled, along with all its
input and output edges.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Input 1

Input 2

Node Mutations: Disable Node

Node
IN 1

Input 3

Node
IN5

Disable Node

Input 3

Node
IN5

* Node IN 5 is selected to be disabled, along with all its
input and output edges.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology

Prague, Czech Republic
July 13th-17th, 2019

Clone

Clone

Input 3

Node
IN5

Input 3

Node
IN5

* Clone makes no modifications at all to the parent,
allowing it to continue with the back propagation process.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology

Prague, Czech Republic
July 13th-17th, 2019

Crossover

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Worse
Parent

Better
Parent

Input 1

Node
IN 1

Crossover

Input 3

-

Input 2 \ OU:put

Node
IN 3

/.

Input 3

Rochester Institute of Technology

\/

Node
IN 2

Output

A

Node
IN 3

Node
IN 4

Node
IN 1
Input 1
Output
Crossover | input2 1
Node
Input 3 -+ N3
Node
IN 4

e Crossover creates a child RNN using all reachable
nodes and edges from two parents. A node or edge is
reachable if there is a path of enabled nodes and
edges from an input node to it as well as a path of
enabled nodes and edges from it to an output node,
l.e., a node or edge is reachable if it actually affects
the RNN.

e Crossover can either be intra-island or inter-island.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

Crossover: Lamarckian Weight Initialization

e |nitial RNN weights generated uniformly at random
(between -0.5 and 0.5).

e New components (hodes/edges) are generated a normal
distribution based on the average, standard deviation,

and variance of the parent(s) weights.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Crossover: Lamarckian Weight Initialization

* In crossover where a node/edge exists in both parents we
recombine the weights. The child weights, wc, are
generated by recombining the parents’ weights:

We = r(WpZ - Wp1) + Wp1

* Where r is a random number -0.5 <=r <= 1.5, where wp1
Is the weight from the more fit parent, and wp2 is the
weight from the less fit parent. We can change r's bounds
to prefer weights near one parent over the other.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Distributed Neuro-Evolution

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Synchronous/Parallel EAs

fithess evaluation

Population 1

fithess evaluation

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

fithess evaluation

* Traditional EAs generate an entire population at a time, evaluate the
fitness of every individual and then generate the next population.

e This has problems in that if the population size is not evenly
divisible by the number of processors available there is wasted
computation. Also, the population size can't be less than the
number of processors.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology

Prague, Czech Republic
July 13th-17th, 2019

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Synchronous/Parallel EAs

fithess evaluation

Population 1

fithess evaluation

—Pp 5 sec
» 20 sec
—p» 3 sec

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

fithess evaluation

* Things are even more challenging if the fitness evaluation
times of the individuals are different or even worse
nondeterministic. Lots of waiting and unused cycles.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology

Prague, Czech Republic
July 13th-17th, 2019

Asynchronous EAs

Master Process < worker requests an individual Worker Process 1
. Worker requests an individual.
masters generates an individual to evaluate » L Worker calculates fitness function (in our case,
. s g . trains the RNN with backprop).
Ropuilation’ < worker reports updated individual 2Vorker reports results and requests more work.
Individual 1
Individual 2 .
< worker requests an individual Worker Process 2
Individual 3 o Worker requests an individual.
masters generates an individual to evaluate » | Worker calculates fitness function (in our case,
Individual 4 - e 2\, trains the RNN with backprop).
< worker reports updated individual orker reports results and requests more work.
Individual 5
Individual 6
Indivi : < worker requests an individual Worker Process N
TelElED ¥ o Worker requests an individual.
masters generates an individual to evaluate » | Worker calculates fitness function (in our case,
. trains the RNN with backprop).
< worker reports updated individual 2Vorker reports results and requests more work.

The Master process keeps a "steady state” populuation.

Workers independently request work (master generates new RNNs
to train), calculate fitness and report results.

No worker waits on another worker - naturally load balanced.
Workers can even request a queue of work to reduce latency.
Number of worker processes is independent of population size.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Asynchronous EAs

Master Process < worker requests an individual Worker Process 1
. Worker requests an individual.
masters generates an individual to evaluate » L Worker calculates fitness function (in our case,
: . g s trains the RNN with backprop).
Population 1 < worker reports updated individual z\mrker RS (120 1T (0 et Wi
Individual 1
Individual 2 e
< worker requests an individual Worker Process 2
Individual 3 individual I Worker requests an individual.
masters generates an individual to evaluate » | Worker calculates fitness function (in our case,
Individual 4 - e 2\, trains the RNN with backprop).
< worker reports updated individual orker reports results and requests more work.
Individual 5
Individual 6
Individual 7 < worker requests an individual Worker Process N
ndividua L Worker requests an individual.
masters generates an individual to evaluate » | Worker calculates fitness function (in our case,
. trains the RNN with backprop).
< worker reports updated individual 2Vorker reports results and requests more work.

e Asynchronous EAs can scale to millions of processors, whereas
synchronous EAs are very limited [1].

[1] Travis Desell, David P. Anderson, Malik Magdon-Ismail, Heidi Newberg, Boleslaw
Szymanski and Carlos A. Varela. An Analysis of Massively Distributed Evolutionary
Algorithms. In the Proceedings of the 2010 IEEE Congress on Evolutionary Computation
(IEEE CEC 2010). pages 1-8. Barcelona, Spain. July 2010.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Islands

Master Process

Island 1 Island 1 Island 1 Island 1
Individual 1 Individual 1 Individual 1 Individual 1
Individual 2 Individual 2 Individual 2 Individual 2
Individual 3 Individual 3 Individual 3 Individual 3

e EXAMM uses islands, which have been shown to potentially provide
superlinear speedup on some EAs [2].

e The master process keeps separate "island” populations and performs
crossover within islands (intra-island crossover) or crossover between
islands (inter-island crossover).

[2] Enrigue Alba and Marco Tomassini. 2002. Parallelism and evolutionary algorithms. |[EEE
Transactions on Evolutionary Computation: 6, 5 (2002), 443-462.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic

Rochester Institute of Technology Julv 13th-17th. 2019
uly - ’

Islands

Master Process

Island 1 Island 1 Island 1 Island 1
Individual 1 Individual 1 Individual 1 Individual 1
| o . . intra-island
Individual 2 \/ Individual 2 Individual 2 Individual 2 > B or
Individual 3 Individual 3 Individual 3 Individual 3

inter-island
crossover

* When workers request individuals, the master process generates them
from an island in a round-robin mannet.

* Individuals are inserted into an island if they are better than the worst
individual in that island (and the worst is removed) - Individual islands
evolve/speciate faster.

* Periodically crossover happens between islands for most fit
individuals, sharing information (a random individual on an island is
crossed over with the best individual from another island).

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

Rochester Institute of Technology

Data Sets

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Data Sets

 Two large-scale, real-world data from Aviation and Power
iIndustries used to evaluate EXAMM.

e 10 flights from the National General Aviation Flight
Information Database (NGAFID):
 1-3 hours long
* per second readings
e 26 parameters

e 12 coal plant burners from a DOE award with Microbeam
Technologies, Inc.

e 10 days long
* per minute readings
e 12 parameters

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Data Sets: Coal Plant

12 data files, 12 parameters:

1. Conditioner Inlet Temp 8. Secondary Air Split

2. Conditioner Outlet Temp 9. Tertiary Air Split

3. Coal Feeder Rate 10. Total Combined Air Flow

4. Primary Air Flow 11. Supplementary Fuel

5. Primary Air Split Flow

6. System Secondary Air 12. Main Flame Intensity
Flow Total

/. Secondary Air Flow

e Parameters are non-seasonal and correlated/dependent.

* Predicting Fuel Flow and Flame Intensity

 Data made public on github repo. Pre-normalized and
anonymized.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Data Sets: NGAFID

10 data files, 26 parameters:

1. Altitude Above Ground Level (AIRAGL)

2. Engine 1 Cylinder Head Temperature 1 (E1
CHTH)

3. Engine 1 Cylinder Head Temperature 2 (E1
CHT2)

4. Engine 1 Cylinder Head Temperature 3 (E1

CHT3)

Engine 1 Cylinder Head Temperature 4 (E1

CHT4)

Engine 1 Exhaust Gas Temperature 1 (E1 EGT1)

Engine 1 Exhaust Gas Temperature 2 (E1 EGT2)

Engine 1 Exhaust Gas Temperature 3 (E1 EGT3)

Engine 1 Exhaust Gas Temperature 4 (E1 EGT4)

0. Engine 1 Oil Pressure (E1 OilP)

1. Engine 1 Oil Temperature (E1 OIlT)

o

TS9N

12. Engine 1 Rotations Per minute (E1 RPM)
13. Fuel Quantity Left (FQtyL)

14. Fuel Quantity Right (FQtyR)

15. GndSpd - Ground Speed (GndSpd)
16. Indicated Air Speed (IAS)

17. Lateral Acceleration (LatAc)

18. Normal Acceleration (NormAc)

19. Outside Air Temperature (OAT)

20. Pitch

21.Roll

22.True Airspeed (TAS)

23.Voltage 1 (volt1)

24.Voltage 2 (volt2)

25. Vertical Speed (VSpd)

26. Vertical Speed Gs (VSpdG)

e Parameters are non-seasonal and correlated/dependent.

* Predicting RPM and Pitch

 Data made public on github repo. Non-normalized and
anonymized.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic

'Rochester Institute of Technology Julv 13th-17th. 2019
uly - ;

Results

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Computing Environment

RIT Research Computing systems used to gather results.
Compute nodes heterogeneous:

e 10 core 2.3 GHz Intel Xeon CPU E5-2650 v3

e 32 core 2.6 GHz AMD Opteron Processor 6282 SE

e 48 core 2.5 GHz AMD Opteron Processor 6180 SEs
All compute nodes ran RedHat Enterprise Linux 6.10.

EXAMM runs utilized different compute notes as
determined by RC's SLURM scheduler.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

EXAMM Experimental Setup

EXAMM run with individual memory cells, individual memory cells +
simple neurons, and with all memory cells and simple neurons.

Memory cell types:
 Delta-RNN

e GRU

e LSTM

e MGU

e UGRNN

K-fold cross validation (2 files per fold), 10 repeats per fold, 2 output
parameters (RPM, Pitch) on NGAFID data - 1100 runs.

K-fold cross validation (2 files per fold), 10 repeats per fold, 2 output
parameters (Flame Intensity, Fuel Flow) on Coal Data - 1320 runs.

EXALT trained 2000 RNNs for 10 epochs each, distributed across 20
Processes.
4.840,000 RNNs trained in total in ~24,200 CPU hours

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Flame Intensity

Flame Intensity

Best Case Avg. Case Worst Case
A-RNN -0.92312 A-RNN+simple -1.7775 all -1.5404
A-RNN+simple -0.90534 LSTM-+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026
UGRNN-+simple -0.71451 A-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703
LSTM+simple -0.42565 UGRNN 0.19272 A-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246
MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49735 UGRNN 0.9569
MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

 Rankings (deviations from mean) for flame intensity
predictions. Lower values (higher on the chart) is better.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

Rochester Institute of Technology

Fuel Flow

Fuel flow
Best Case Avg. Case Worst Case
all -0.92643 LSTM -1.4415 LSTM-+simple -1.2349
UGRNN-+simple -0.7644 A-RNN+simple -1.2172 LSTM -1.0818
LSTM -0.70271 MGU+simple -1.1255 A-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
A-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799
MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
A-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85832 A-RNN 0.99531 UGRNN-+simple 0.58938
GRU 1.5692 UGRNN-+simple 1.3537 A-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

 Rankings (deviations from mean) for flame intensity
predictions. Lower values (higher on the chart) is better.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

Rochester Institute of Technology

RPM

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958
MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
A-RNN -1.0347 A-RNN -1.0081 A-RNN+simple -0.87687
LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
A-RNN+simple -0.29348 A-RNN+simple -0.069508 UGRNN -0.59783
UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 A-RNN 0.41787
UGRNN-+simple 0.9463 MGU 0.93224 all 1.0968
GRU-+simple 1.271 LSTM 1.0852 LSTM 1.1219
all 1.5672 UGRNN+simple 1.147 MGU 1.8033

 Rankings (deviations from mean) for flame intensity
predictions. Lower values (higher on the chart) is better.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

Rochester Institute of Technology

Pitch

Pitch
Best Case Avg. Case Worst Case
MGU+simple -1.1631 UGRNN-+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284
LSTM-+simple -1.0698 A-RNN+simple -0.56665 A-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415
GRU+simple -0.50079 GRU -0.5047 A-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873
GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639
A-RNN 1.0682 UGRNN 0.70761 all 0.39991
A-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN-+simple 1.3411 all 2.1345 GRU+simple 2.3828

 Rankings (deviations from mean) for flame intensity
predictions. Lower values (higher on the chart) is better.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

Overall Rankings

Overall Combined
Best Case Avg. Case Worst Case
MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 A-RNN+simple -0.90771 GRU -0.6687
LSTM -0.38905 MGU+simple -0.59001 A-RNN+simple -0.47566
A-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133
all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 A-RNN -0.013211 LSTM 0.12847
A-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN-+simple 0.26059
UGRNN-+simple 0.20212 MGU 0.63765 A-RNN 0.263535
GRU-+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381
MGU 1.2642 all 0.88541 GRU+simple 0.83814

e Combined rankings from all 4 prediction parameters.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
July 13th-17th, 2019

Rochester Institute of Technology

EXAMM Results

No memory structure was the best.

Delta-RNN, LSTM, and MGU tended better than GRU,
and UGRNN (except in fuel flow, best avg case for pitch).

Delta-RNNs compared competitively with LSTMs while
requiring less weights (i.e., a less complex structure).

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

EXAMM Results

Allowing all memory cells has risks and benefits.

All cell types + simple neurons found the best networks in the case of
fuel flow, 2nd best in the case of pitch, and 3rd best in the case of flame
intensity.

Using all memory cell types generally performed better than the mean on
the best case, however performed worse in the average and worst
cases.

Allowing EXAMM to select from all possible memory cells was not
entirely a bad strategy. In many cases it found the best but on average it
did not do as well (most likely due to it having a much larger search

space - tweaking hyperparameters for more exploration could improve
this).

Open Question: Can we further improve results by dynamically adapting
the rates at which memory cells are generated?

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

EXAMM Results

Adding simple neurons generally helped - with some notable
exceptions.

All memory cell types improved with them except GRU.

Simple neurons + MGUSs resulted in dramatic improvement, bringing them
from some of the worst rankings to some of the best rankings (e.g., in the
overall rankings for best found networks, MGU cells alone performed the
worst while MGU and feedforward performed the best).

Other cell types (LSTM and Delta-RNN) showed less of an improvement.

This finding may highlight that the MGU cells could stand to benefit from
further development.

Even the rather simple change of allowing simple neurons can result in
significant changes in RNN predictive ability. Selection of node and cell
types for neuro-evolution should be done carefully.

Open question: Why do GRU cells performed worse with simple neurons
added? Why do MGU cells perform so much better?

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

EXAMM Results

* Larger networks tended to perform better, yet memory cell count correlation to
MSE was not a great indicator of which cells performed the best.

* Challenges for developing neuro-evolution algorithms:

* Compared the memory cells types most correlated to improved performance
against the memory cell types most frequently selected by EXAMM.

» EXAMM was not selecting cell types that would produce the best performing RNNSs,
rather cell types that provided an improvement to the population (most did) -- this
can be a non-optimal choice.

* An RNN with a small number of well trained memory cells was sufficient to yield
good predictions, and adding more cells to the network only served to confuse the
predictions.

* Open problems:

* Running a neuro-evolution strategy allowing all memory cell types and then utilizing
counts or correlations to select a single memory cell type for future runs may not
produce the best results.

* Dynamically tuning which memory cells are selected by a neuro-evolution strategy is
more challenging since the process may not select the best cell types (e.g., when
the network already has enough memory cells) — so this would at least need to be
coupled with another strategy to determine when the network is “big enough”.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Future Work

Evolving memory cell structures.

Allowing multiple activation functions (tanh mostly used in
this work).

Hyperparameter optimization for RNN training.

Layer-level mutations to speed evolution

Self-tuning EXAMM.

EXAMM for transfer learning: take a pre-evolved/pre-
trained network and evolve it to new problems.

Use our findings to examine and improve existing RNN
memory cell structures.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

Discussion/Questions?

https://github.com/travisdesell/exact

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
| July 13th-17th, 2019

input 1

input 2

Example Network

Genome Fitness: 2.1461% MAE

input 3 input 4 input 5 input 6 input 7 input 8 input 9 input 10 input 11 input 12
depth 0 depth 0 depth 0 depth 0 depth 0 depth 0 depth 0 depth 0 depth 0 depth 0 depth 0 depth 0
Conditioner_Inlet_Temp || Conditioner_Outlet_Temp || Coal_Feeder_Rate Primary_Air_Flow || Primary_Air_Split System_Secondary_Air_Flow_Total Secondary_Air_Flow | - Secondary_Air_Split || Tertiary_Air_Split || Total_ Comb_Air_Flow | Supp_Oil_Flow || Main_Flm_Int
/(/ \ ; ///
, - e
1 TToRNN e 7 - I i | p——— A
MGU node #287 jordan node #974 | UGRNN node #1461 . feed_forward node #604 || delta node #1112 UGRNN node #722 | { LSTM node #16 I pd
depth 0.813457 |/ depth 0.5 | depth 0.541938 | < | depth 0.00601095 depth 0.156731 depth 0.188877 depth 0.310609 //
\ P o
e
\\ : /////
R T () . . /
elman node #1844 | 1~ —»| GRU node #1103 | jordan node #143 jordan node #144 . '| LSTM node #374 UGRNN node #522 MGU node #230 e
\\ depth O.480222_| depth 0411999 . depth 0.5 depth 0.5 : depth 0.409206 depth 0.5 depth 0.5) //
\ i . : ~
W SE— . g
\ \ Wn node #178 | i elman node #35 g
\ depth 0.414791 *| depth 0.289746J e
AN - - . ~ T
\ \ 'l \ . _—
\ : N R ////
\ : ~ 5 _
N T delta node #760 |
\ " | MGU node #724 X delta node #769 LSTM node #120
\ depth 0.5 ,' depth 0.427598 depth 0.818413
< .
v o r 1 i I
AN elman node #156 jordan node #292 || UGRNN node #523 MGU node #269 || jordan node #291
\\ depth 0.567231 | depth 0.5 depth 0.5 depth 0.546723 depth 0.5
_
\\~.
\\ —p
delta node #1370 " —>(GRU node #839 jordan node #772
depth 0.887645 depth 0.875261 I depth 0.534986
{ GRU node #119 || jordan node #171 |
depth 0.846991 depth 0.999737
MGU node #723 jordan node #734
depth 0.5 depth 0.0608112
jordan node #975 LSTM node #373
depth05 | depth 0.5
w3] /

R I T \ Rochester Institute of Technology

depth 1
Main_FIm_Int

The 2019 Genetic and Evolutionary Computation Conference

Prague, Czech Republic
July 13th-17th, 2019

EXAMM vs. NEAT vs. ACO

L H

H—

HH
Hh
H])
H}
Ot
HH
{hO
(H
HH
O HH
O-{H
O
HHO
{H
£
H}—O
ol-@
O
O-{h
Ofb
O+ H
L EEL
HI—O
{}HO
HFO

0.050 A

0.045 -

0.040 -
0.035 A
0.030 A

SSaUI4

x4
- Selg oN

_ ome ON

- 0806°00

- 08G/°00

- 080G°00

- 086700

- 0801700

u ove ON

- 0706°00

- 07/ 00

- 070600

- 0vGZ' 00

- 70T 00

- 09T SIUY-Z
- 09T JUY-T
- 08 SIUY-Z
- 08 JUy-T
- 0F SIUY-C
- 0F JUy-T
- 07 SIUY-Z
- 07 UY-T
- 0T SIUY-Z
- 0T JUy-T
B owce

N ovce

- 1TX3

- LVAN

 Recent results comparing NEAT to EXAMM/EXALT on

flame intensity data set.

The 2019 Genetic and Evolutionary Computation Conference

Prague, Czech Republic
July 13th-17th, 2019

Rochester Institute of Technology

1 Layer Feed Forward

0.020 (l)ne Layer FF - Flame Intensity

! ! !

— fold O
— fold 1
fold 2
— fold 3
— fold 4
fold 5
fold 6
— fold 7
fold 8
fold 9
— fold 10
fold 11

Best MSE Statistics

0.000
0

| I I !
200 400 600 800 1000

BP Epochs Evaluated

 Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference

R I T I Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

2 Layer Feed Forward

0.020,' 'll'wo]Layer!FF - Flam?e Inten5|t):

— fold O
— fold 1
fold 2
— fold 3
— fold 4
fold 5
fold 6
— fold 7
fold 8
fold 9
— fold 10
fold 11

0.015

0.010

Best MSE Statistics

0.005 f-

0.000 i i i L
0 200 400 600 800 1000

BP Epochs Evaluated

 Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference

R I T \ Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

1 Layer LSTM

One Layer LSTM - Flame Intensity
! ! !

0.020

— fold O
— fold 1
fold 2
— fold 3
— fold 4
—— fold 5
—— fold 6
— fold 7
—— fold 8
fold 9
— fold 10
—— fold 11

0.015

0.0T0 MR .. i :

Best MSE Statistics

0.005 -

—_ i -

0.000

0 200 400 600 800 1000
BP Epochs Evaluated

* Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference

R I T | Rochester Institute of Technology Prague, Czech Republic

July 13th-17th, 2019

2 Layer LSTM

Two Layer LSTM - Flame Intensity
! ! !

Hﬁ —— fold 0

— fold 1
fold 2
: : — fold 3
: : z — fold 4
0.010 e % \ fold 5
S g ; g ~—— fold 6
~ ' ' — fold 7
—— fold 8
fold 9

0.005 aih, ; — fold 10

—~— —— fold 11

0.020

Best MSE Statistics

0.000 L | | | |
0 200 400 600 800 1000

BP Epochs Evaluated

* Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference

R I T \ Rochester Institute of Technology Prague, Czech Republic

July 13th-17th, 2019

Jordan

0.020 ! Jordan!- Flame In!tenSIty !

— fold O
— fold 1
fold 2
— fold 3
— fold 4
~—— fold 5
~—— fold 6
— fold 7
! : —— fold 8
: = : fold 9
. g, e \““ """"" — fold 10
: —— fold 11

0.015

0.010 oo R N— B

Best MSE Statistics

0.000 | i I I |
0 200 400 600 800 1000
BP Epochs Evaluated

* Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference

R I T | Rochester Institute of Technology Prague, Czech Republic

July 13th-17th, 2019

Elman

0.020 : Elman!- Flame InltenSIty

— fold O
— fold 1
fold 2
— fold 3
— fold 4
—— fold 5
—— fold 6
— fold 7
—— fold 8
fold 9
—— fold 10
—— fold 11

0.015 L.

Best MSE Statistics

— i i i
0 200 400 600 800 1000
BP Epochs Evaluated

* Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference

R I T \ Rochester Institute of Technology Prague, Czech Republic

July 13th-17th, 2019

EXALT

EXALT - Flame Intensiity
! ! !

0.020 . ‘
M — fold 0

— fold 1
fold 2
— fold 3
— fold 4
fold 5
fold 6
— fold 7
fold 8
fold 9
— fold 10
fold 11

0.010

=
|

Best MSE Statistics

1 I
10000 15000 20000

BP Epochs Evaluated

I
5000

 Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference

R I T \ Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

EXALT Results

Nodes|Edges|/Rec. Edges|Weights
One Layer FF 25 156 0 181
Two Layer FF 37 300 0 337
Jordan RNN 25 156 12 193
Elman RNN 25 156 144 325
One Layer LSTM 25 156 0 311
Two Layer LSTM 37 300 0 587
EXALT Best Avg. 14.7| 26.2 14.6 81.5

Significantly more reliable than the fixed architectures.

Wallclock time was faster in terms of training time, 2-10x faster than the
fixed RNNs.

EXALT's RNNs were smaller (see above).

However, some of the fixed RNNs did find slightly better performance in
the best case across all the repeats.

AbdEIRahman ElISaid, Steven Benson, Shuchita Patwardhan, David Stadem and Travis Desell.
2019. Evolving Recurrent Neural Networks for Time Series Data Prediction of Coal Plant
Parameters. In The 22nd International Conference on the Applications of Evolutionary
Computation. Leipzig, Germany. April 22-24, 2019. To appear.

The 2019 Genetic and Evolutionary Computation Conference

Rochester Institute of Technology Prague, Czech Republic
July 13th-17th, 2019

