Configuration Management Specification for InserterVision Report System Page 14

[image: image1.png]VIDEK

Clearly a company with vision™

Configuration Management
for

InserterVision Report System, Release 1.0

Revision 1.1
by VDK-RIT

02/07/2004

Revision History

	Name
	Date
	Reason For Changes
	Version

	Greg Dicheck
	12/15/03
	Initial draft
	Draft 1

	Greg Dicheck
	01/19/04
	
	Draft 2

	Greg Dicheck
	01/24/04
	
	Draft 3

	Greg Dicheck
	01/26/04
	Moved to Final
	Rev 1.0

	Adam Beck
	02/07/04
	Formatting changes only
	Rev 1.1

TABLE OF CONTENTS
41
INTRODUCTION

41.1
Purpose

41.2
Scope

41.3
Definitions

51.4
References

62
SOFTWARE CONFIGURATION MANAGEMENT

62.1
SCM organization

62.1.1
Purpose

62.1.2
Draft

62.1.3
Review

62.1.4
Test

62.1.5
Maintain

62.2
Relationship of CM to the software process life cycle

72.3
Interfaces to other organizations on the project

72.3.1
Development team

72.3.2
Maintenance team

83
SOFTWARE CONFIGURATION MANAGEMENT ACTIVITIES

83.1
Configuration Identification

83.2
Specification Identification

83.2.1
Labeling and numbering scheme for documents and files

83.2.2
Relationship between documents and file names

83.2.3
Description of identification tracking scheme

83.2.4
Revision history

93.2.5
Controlled status

93.2.6
Identification scheme for versions and releases

93.3
Source Code Library

93.3.1
Identification and control mechanisms used

93.3.2
Number of libraries and the types

93.3.3
Backup and disaster plans and procedures

93.3.4
Recovery process for any type of loss

103.3.5
Retention policies and procedures

103.4
Configuration Control

103.4.1
Procedures for processing change requests and approvals

103.4.2
Organizations assigned responsibilities for change control

103.5
Configuration Auditing

114
CM MILESTONES

114.1
Purpose

114.2
Define all CM project milestones

125
CODING STANDARD

125.1
Language

125.2
Hardware Documentation References

125.3
Naming

125.3.1
Source file naming convention

125.3.2
Function naming convention

125.3.3
Variable naming convention

135.3.4
Tags

135.4
Semantics

135.4.1
Declaration and assignment of variables

135.4.2
Return statements

135.4.3
Tag-based languages

135.4.4
Comments

135.4.5
Source code layout

146
BUILD PROCESS

146.1
Drafts

146.2
Initial revisions

146.3
Subsequent modifications to the revision

146.4
Test build

146.5
Release build

1 INTRODUCTION

1.1 Purpose

This configuration management plan will outline guidelines that ensure the integrity of documents and code across their revisions for the VDK-RIT InserterVision Report System (IVRS).

1.2 Scope

This plan will provide standards and procedures for drafting, reviewing, submitting, and verifying development materials.

1.3 Definitions

Development Material: Any document or code that is produced by VDK-RIT throughout the software engineering life cycle for this project.

Document: A written or typed plan, design, specification, or guide that is intended to outline or describe part of the development process, its materials, or components of the product.

Draft: Any document or source code that has not been thoroughly reviewed by the team for adherence to given team development standards.

Library: A collection of source code or modules which serve as “building blocks” or the foundation of other source code or modules. These development materials may or may not constitute stand-alone software. Examples include math functions and graphical user-interface components.

Review: Process by which any document and code is verified by the team for completeness or correctness. Materials passing this phase successfully may be submitted as a stable.

Revision Control Software (RCS): Software selected by the team which will automatically maintain version information, including owner, revision number, date/time last modified, and last modified by author. It must ensure data integrity across builds and provide version tracking.

Source Code: Components or modules of the product, which have been written in a program language, such as PHP, HTML, or Java, and have not been compiled yet.

Stable: Any document or code that has been successfully reviewed and found acceptable for usage within the main development environment.

1.4 References

Software Engineering Institute at Carnegie Mellon. “Configuration Management Plans: The Beginning to your CM Solution”. 2003.

2 SOFTWARE CONFIGURATION MANAGEMENT

2.1 SCM organization

The procedures outlined in this plan move through the following phases: purpose, draft, review, test, and maintain.

2.1.1 Purpose

VDK-RIT team outlines the responsibilities of a given document or coded component.

2.1.2 Draft

Individual or team-based initial revising of any document or code.

2.1.3 Review

Team-based revising of a draft to improve upon or correct inadequacies.

2.1.4 Test

Verifying that a development material meets the guidelines set forth in the requirements.

2.1.5 Maintain

Repair or improve upon any document or code that previously passed into functional usage within the system.

2.2 Relationship of CM to the software process life cycle

This plan will follow through all five software engineering stages of the life cycle, including requirements, design, implementation, testing, and maintenance. Throughout its lifetime, any development material will have a purpose defined by the team which provides a focus and responsibility for the material. This purpose must reflect the goals set forth in the requirements and specifications. The draft and review phases of a development material will manage the design and implementation stages of the software life cycle. These phases must ensure adherence to defined standards and guidelines, as defined in the requirements. The test and maintain phases of this plan work to ensure the integrity of development materials across revisions.

2.3 Interfaces to other organizations on the project

The VDK-RIT team will work with the Videk team throughout the initial development and prototyping of the system; however, Videk will continue maintenance and deployment of the final product to its customers.

2.3.1 Development team

The VDK-RIT team will act as the principle architects for this project. This team will provide the requirements and specifications as elicited from its customer, Videk. The VDK-RIT team will design, implement, test, and deliver an initial version of the IVRS to Videk, including all documentation and source code.

2.3.2 Maintenance team

Videk will continue its testing, maintenance, and revising of the IVRS before ultimately deploying the system to its customers.

3 SOFTWARE CONFIGURATION MANAGEMENT ACTIVITIES

3.1 Configuration Identification

In software development groups, each programmer has a personal programming style. When people other than the programmer must review the implementation, it can be very difficult to understand fully the implementation. In order to make the software source code more homogenized, this programming standard is defined for software development throughout. This guide defines the programming standard, good practice, and minimum requirement for source code documentation.

3.2 Specification Identification

This coding standard must be used when a developer adds or modifies documentation or source code to the IVRS.

3.2.1 Labeling and numbering scheme for documents and files

All documents must contain a title page, featuring the document title, date, team name, and revision number. Each subsequent body page must contain a header and footer. The header shall display the title of the document, left-justified on the page, and the page number, right-justified. The footer may contain any pertinent footnotes. All body pages must follow this standard, except the title page, table of contents, and reference pages (see this document as an example).

3.2.2 Relationship between documents and file names

For documents, file names must contain the complete title of the document it stores; however, words in the name may be abbreviated. For drafts, file names should always be prefaced with the word “draft”.

3.2.3 Description of identification tracking scheme

For source code, revision numbers should be handled automatically in the header by the revision control software (RCS).

For documents, the revision number is displayed on the title page.

3.2.4 Revision history

For source code, the revision number, its date, and the author should be automatically added by the RCS to the top of the source code or in the log file at the very least (see this document as an example).

For documents, a revision history page must immediately follow the title page. This history should list the revision number, the revision date, and the author of the revision. Drafts may be included in this revision history.

3.2.5 Controlled status

Drafts borrow the next revision number prefaced by the word “draft”. Documents and source code obtain a new revision number after a team review and acceptance into the RCS.

3.2.6 Identification scheme for versions and releases

Versions are identified as documents or software that has successfully passed from draft to review to stable phase and into the RCS software as a usable development material. Releases refer to development materials that have been deemed ready for delivery to the customer. After a release has been made, a new revision “train” must been started for new modifications.

For example, revision 2.0 train is modified and fixed until revision 2.6, then delivered to the customer. Any non-fix modifications, such as new features, begin under the revision 3.0 train.

3.3 Source Code Library

The source code libraries contain all non-draft materials for all revisions during this project.

3.3.1 Identification and control mechanisms used

Each revision train is managed automatically by the RCS. This management includes document information, file headers, and revision numbers.

3.3.2 Number of libraries and the types

There are two types of libraries, in-house and third-party. For the sake of time and convenience, third-party libraries may be included for non-critical components, such as math functions and graphical interfaces. These components may not adhere to coding standards; however, they must still pass into the RCS as a reviewed and stable revision. In-house libraries must fully adhere to coding standards and will encompass all critical components.

3.3.3 Backup and disaster plans and procedures

The RCS manager or the alternate must store off-site backups of the system at least once a week. Other team members are encouraged to acquire and store off-site a copy of the RCS tree as well.

3.3.4 Recovery process for any type of loss

In the event of a loss, the RCS manager is responsible for obtaining the latest stable form of the RCS tree and restores it to team-wide use as soon as possible. In the even that the primary RCS system can not be restored in a timely fashion, the manager must provide an alternate RCS during the downtime.

3.3.5 Retention policies and procedures

The complete RCS tree must be backed up in its entirety at least once a week by the RCS manager and stored until at least one month after the completion of the project.

3.4 Configuration Control

This section provides information regarding the draft, review, and submission to stable process.

3.4.1 Procedures for processing change requests and approvals

Authors are assigned to drafts during team meetings by the team lead after group discussions. The author must abide by the requirements, specifications set forth in the design document. Any design changes should not be made without discussion amongst team members, even during the draft phase. During the review process, design changes or modifications to the draft may be proposed by the author. If these changes are accepted, the requirements, specifications, and/or design document must reflect these changes. After passing the review process, development materials are submitted to the RCS for a revision number.

3.4.2 Organizations assigned responsibilities for change control

The VDK-RIT team is responsible for reviewing and accepting changes to the requirements, specifications, and design materials; however, Videk has the ultimate authority on accepting changes to stable materials.

3.5 Configuration Auditing

Document drafts and modified revisions are reviewed by the team, as scheduled by the team lead. Documents are checked for semantics, content, and adherence to existing guidelines. Work drafted individually in pieces will be collected by Compilation Manager, compiled, and modified to meet proper grammar and style guidelines. This collected work will then be reviewed by the team before moving into a stable form. New stable documents are always submitted to Videk for further review and approval. Materials rejected by Videk return to the owner and receive a “draft” status.

Source code is reviewed and tested against the test plan, as necessary.

4 CM MILESTONES

4.1 Purpose

These goals provide focus for the project and help ensure that the team completes work in a timely fashion.

4.2 Define all CM project milestones

Weeks 1 to 3 - Setup
Week 4 - Review progress and prepare initial requirements draft
Week 5 - Prototype GUI v1.0
Week 6 - Complete SRS draft
Week 7 - Refine and deliver SRS v1.0
Week 8 - Prepare Design document draft
Week 9 - Refine SRS v2.0 and Design document v1.0
Week 10 - Refine and deliver SRS v2.0 and Design document v1.0
Weeks 11 to 19 – TBA
Week 20 - Presentation and postmortem

5 CODING STANDARD

Unless otherwise specified, all topics and situations not covered in these standards are left to the discretion of the author; however, the final approval is left to the development team.

5.1 Language

All variable, function, class and file naming and documentation in source code must be in English.

5.2 Hardware Documentation References

If a particular module of source code interfaces to hardware in a manner that only be understood if the reader has knowledge about the hardware interface specification, then a reference must be made to the hardware documentation. This reference must enable the reader to locate the hardware documentation.

5.3 Naming

These standardized naming schemes to promote uniformity and clarity across the product development.

5.3.1 Source file naming convention

The first letter of each word in the filename must start with a capital letter. The name can not contain any spaces; however, it may contain underscores (_). The name must be descriptive for its functionality, but may not exceed 32 characters in length.

5.3.2 Function naming convention

Each function name must start with a lower case letter using capital letters to separate words. It can not contain an underscore (_). The name must be descriptive for functionality of member function. Functions that set a member variable must start with “set” in the name. Similarly, functions that retrieve a member variable must start with “get” in the name.

5.3.3 Variable naming convention

All locally accessible variables must start with a lower case letter and use capital letters to separate words. It can not contain an underscore (_). All globally accessible variables must start with the word “global” and following the same standard as locally accessible variables. All constants must contain only capital letters and may use underscores to separate words.

5.3.4 Tags

Tag names and their attributes/options may only contain lower case letters and can not contain underscores (_).

5.4 Semantics

5.4.1 Declaration and assignment of variables

All variables must be explicitly defined and initialized at the beginning of a code block. Strings must a least be initialized to the empty string (“”); numbers set to zero; and booleans set explicitly to true or false.

5.4.2 Return statements

There can only be one return statement per code block to mark clearly when a value is returned.

5.4.3 Tag-based languages

When using a tag-based language, both beginning and end tags must be included, unless intentionally exempted by the language.

5.4.4 Comments

All functions must be prefaced with a brief description of its purpose, the expected parameters, and its return value. Critical and dense blocks of code should be prefaced with a brief purpose and include periodic notes within each sub-block.

5.4.5 Source code layout

Any text editor is acceptable; however, indentations may only be made with spaces to ensure compatibility across all editors. Some editors offer “soft tabbing” which converts tabs into spaces while saving, but no indentation should exceed four spaces beyond its parent level.

6 BUILD PROCESS

6.1 Drafts

All drafts are assigned an owner. This owner authors the document or source code within their personal RCS repository.

6.2 Initial revisions

All drafts reviewed by the team become initial revisions after passing inspection. These approved documents or sources are added to the team's project RCS repository.

6.3 Subsequent modifications to the revision

Any team member may copy a revision to their personal RCS repository in order to make modifications to a stable build; however, these modifications may not be submitted to the build repository until passing at least a peer review.

6.4 Test build

During product tests, both revision and draft code may be used together.

6.5 Release build

Final releases to the customer may only contain code according to the test plan.

[image: image2.bmp]