Chapter 5

Understanding Requirements

Requirements Engineering-I

- Inception—ask a set of questions that establish …
 - basic understanding of the problem
 - the people who want a solution
 - the nature of the solution that is desired, and
 - the effectiveness of preliminary communication and collaboration between the customer and the developer
- Elicitation—elicit requirements from all stakeholders
- Elaboration—create an analysis model that identifies data, function and behavioral requirements
- Negotiation—agree on a deliverable system that is realistic for developers and customers
Requirements Engineering-II

- **Specification**—can be any one (or more) of the following:
 - A written document
 - A set of models
 - A formal mathematical
 - A collection of user scenarios (use-cases)
 - A prototype

- **Validation**—a review mechanism that looks for
 - errors in content or interpretation
 - areas where clarification may be required
 - missing information
 - inconsistencies (a major problem when large products or systems are engineered)
 - conflicting or unrealistic (unachievable) requirements.

- **Requirements management**

Inception

- **Identify stakeholders**
 - “who else do you think I should talk to?”

- **Recognize multiple points of view**

- **Work toward collaboration**

- **The first questions**
 - Who is behind the request for this work?
 - Who will use the solution?
 - What will be the economic benefit of a successful solution?
 - Is there another source for the solution that you need?
Eliciting Requirements

- meetings are conducted and attended by both software engineers and customers
- rules for preparation and participation are established
- an agenda is suggested
- a "facilitator" (can be a customer, a developer, or an outsider) controls the meeting
- a "definition mechanism" (can be work sheets, flip charts, or wall stickers or an electronic bulletin board, chat room or virtual forum) is used
- the goal is
 - to identify the problem
 - propose elements of the solution
 - negotiate different approaches, and
 - specify a preliminary set of solution requirements

Building the Analysis Model

- Elements of the analysis model
 - Scenario-based elements
 - Functional—processing narratives for software functions
 - Use-case—descriptions of the interaction between an “actor” and the system
 - Class-based elements
 - Implied by scenarios
 - Behavioral elements
 - State diagram
 - Flow-oriented elements
 - Data flow diagram
Use-Cases

- A collection of user scenarios that describe the thread of usage of a system
- Each scenario is described from the point-of-view of an “actor”—a person or device that interacts with the software in some way
- Each scenario answers the following questions:
 - Who is the primary actor, the secondary actor(s)?
 - What are the actor’s goals?
 - What preconditions should exist before the story begins?
 - What main tasks or functions are performed by the actor?
 - What extensions might be considered as the story is described?
 - What variations in the actor’s interaction are possible?
 - What system information will the actor acquire, produce, or change?
 - Will the actor have to inform the system about changes in the external environment?
 - What information does the actor desire from the system?
 - Does the actor wish to be informed about unexpected changes?

Use-Case Diagram
Class Diagram

From the SafeHome system ...

<table>
<thead>
<tr>
<th>Sensor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>name/id</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td></td>
</tr>
<tr>
<td>location</td>
<td></td>
</tr>
<tr>
<td>area</td>
<td></td>
</tr>
<tr>
<td>characteristics</td>
<td></td>
</tr>
</tbody>
</table>

- identify()
- enable()
- disable()
- reconfigure()