.NET Serialization Reference

© 2001 Microsoft Corporation.

All rights reserved.

Table of Contents
3Serializing Objects

4Binary Serialization

4Serialization Concepts

5Basic Serialization

7Selective Serialization

7Custom Serialization

9Steps in the Serialization Process

9Versioning

10Serialization guidelines

11XML and SOAP Serialization

12Introducing XML Serialization

13A Simple Class Serialized

13Items that Can Be Serialized

13Serializing and Deserializing Objects

14Advantages of Using XML Serialization

15XML Serialization Considerations

15XSD Data Type Mapping

16Examples of XML Serialization

16Serialization of a DataSet

17Serialization of An XmlElement and XmlNode

17A Class Containing a Field Returning a Complex Object Serialized

18An Array of Objects Serialized

18Serializing a Class that Implements the ICollection Interface

20A Purchase Order Example

25The XML Schema Definition Tool and XML Serialization

26Controlling XML Serialization Using Attributes

27Controlling Array Serialization

28Serializing Derived Classes

29Serializing an Array as a Sequence of Elements

29Serializing an ArrayList

30Controlling Serialization of Classes Using XmlRootAttribute and XmlTypeAttribute

30Preventing Serialization with the XmlIgnoreAttribute

31Attributes that Control XML Serialization

32Overriding XML Serialization

33Overriding Classes

36Saving the Properties of Components

36Serializing the Stream

37Deserializing the Stream

Serializing Objects

Serialization is the process of converting the state of an object into a form that can be persisted or transported. The complement of serialization is deserialization, which converts a stream into an object. Together, these processes allow data to be easily stored and transferred.

The .NET Framework features two serializing technologies:

· Binary serialization preserves type fidelity, which is useful for preserving the state of an object between different invocations of an application. For example, you can share an object between different applications by serializing it to the clipboard. You can serialize an object to a stream, disk, memory, over the network, and so forth. Remoting uses serialization to pass objects "by value" from one computer or application domain to another.

· XML serialization serializes only public properties and fields and does not preserve type fidelity. This is useful when you want to provide or consume data without restricting the application that uses the data. Because XML is an open standard, it is an attractive choice for sharing data across the Web. SOAP is an open standard, which makes it an attractive choice.

In This Section

· Binary Serialization

· Describes the binary serialization mechanism that is included with the common language runtime.

· XML and SOAP Serialization

· Describes the XML and SOAP serialization mechanism that is included with the common language runtime.
Binary Serialization

Serialization can be defined as the process of storing the state of an object instance to a storage medium. During this process, the public and private fields of the object and the name of the class, including the assembly containing the class, is converted to a stream of bytes, which is then written to a data stream. When the object is subsequently deserialized, an exact clone of the original object is created.

When implementing a serialization mechanism in an object-oriented environment, you have to make a number of tradeoffs between ease of use and flexibility. The process can be automated to a large extent, provided you are given sufficient control over the process. For example, situations may arise where simple binary serialization is not sufficient, or there might be a specific reason to decide which fields in a class need to be serialized. The following sections examine the robust serialization mechanism provided with the .NET Framework and highlight a number of important features that allow you to customize the process to meet your needs.

In This Section

· Serialization Concepts

· Discusses two scenarios where serialization is useful: when persisting data to storage and when passing objects across application domains.

· Basic Serialization

· Describes how to use the binary and SOAP formatters to serialize objects.

· Selective Serialization

· Describes how to prevent some members of a class from being serialized.

· Custom Serialization

· Described how to customize serialization for a class by using the ISerializable interface.

· Steps in the Serialization Process

· Describes the course of action serialization takes when the Serialize method is called on a formatter.

· Versioning

· Provides guidelines for dealing with serializing classes across different versions.

· Serialization Guidelines

· Provides some general guidelines for deciding when to serialize an object.

Serialization Concepts

Why would you want to use serialization? The two most important reasons are to persist the state of an object to a storage medium so an exact copy can be re-created at a later stage, and to send the object by value from one application domain to another. For example, serialization is used to save session state in ASP.NET and to copy objects to the clipboard in Windows Forms. It is also used by remoting to pass objects by value from one application domain to another.
Basic Serialization

The easiest way to make a class serializable is to mark it with the Serializable attribute as follows.

[Serializable]

public class MyObject

{

 public int n1 = 0;

 public int n2 = 0;

 public String str = null;

}
The code snippet below shows how an instance of this class can be serialized to a file.

MyObject obj = new MyObject();

obj.n1 = 1;

obj.n2 = 24;

obj.str = "Some String";

IFormatter formatter = new BinaryFormatter();

Stream stream = new FileStream("MyFile.bin", FileMode.Create, FileAccess.Write, FileShare.None);

formatter.Serialize(stream, obj);

stream.Close();

This example uses a binary formatter to do the serialization. All you need to do is create an instance of the stream and the formatter you intend to use, and then call the Serialize method on the formatter. The stream and the object instance to serialize are provided as parameters to this call. Although this is not explicitly demonstrated in this example, all member variables of a class will be serialized – even variables marked as private. In this aspect, binary serialization differs from the XML Serializer, which only serializes public fields.

Restoring the object back to its former state is just as easy. First, create a stream for reading and a formatter, and then instruct the formatter to deserialize the object. The code snippet below shows how this is done.

IFormatter formatter = new BinaryFormatter();

Stream stream = new FileStream("MyFile.bin", FileMode.Open, FileAccess.Read, FileShare.Read);

MyObject obj = (MyObject) formatter.Deserialize(fromStream);

stream.Close();

// Here's the proof

Console.WriteLine("n1: {0}", obj.n1);

Console.WriteLine("n2: {0}", obj.n2);

Console.WriteLine("str: {0}", obj.str);

The BinaryFormatter used above is very efficient and produces a very compact byte stream. All objects serialized with this formatter can also be deserialized with it, which makes it an ideal tool for serializing objects that will be deserialized on the .NET platform. It is important to note that constructors are not called when an object is deserialized. This constraint is placed on deserialization for performance reasons. However, this violates some of the usual contracts the runtime makes with the object writer, and developers should ensure they understand the ramifications when marking an object as serializable.

If portability is a requirement, use the SoapFormatter instead. Simply replace the formatter in the code above with SoapFormatter, and call Serialize and Deserialize as before. This formatter produces the following output for the example used above.

<SOAP-ENV:Envelope

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP- ENC=http://schemas.xmlsoap.org/soap/encoding/

 xmlns:SOAP- ENV=http://schemas.xmlsoap.org/soap/envelope/

 SOAP-ENV:encodingStyle=

 "http://schemas.microsoft.com/soap/encoding/clr/1.0

 http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:a1="http://schemas.microsoft.com/clr/assem/ToFile">

 <SOAP-ENV:Body>

 <a1:MyObject id="ref-1">

 <n1>1</n1>

 <n2>24</n2>

 <str id="ref-3">Some String</str>

 </a1:MyObject>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>
It is important to note that the Serializable attribute cannot be inherited. If we derive a new class from MyObject, the new class must be marked with the attribute as well, or it cannot be serialized. For example, when you attempt to serialize an instance of the class below, you will get a SerializationException informing you that the MyStuff type is not marked as serializable.

public class MyStuff : MyObject

{

 public int n3;

}
Using the serialization attribute is convenient, but it has limitations as demonstrated above. Refer to the guidelines provided in Serialization Guidelines regarding when you should mark a class for serialization, since serialization cannot be added to a class after it has been compiled.
Selective Serialization

A class often contains fields that should not be serialized. For example, let's assume a class stores a thread ID in a member variable. When the class is deserialized, the thread we stored the ID for when the class was serialized might not be running anymore, so serializing this value does not make sense. We can prevent member variables from being serialized by marking them with the NonSerialized attribute as follows.

[Serializable]

public class MyObject

{

 public int n1;

 [NonSerialized] public int n2;

 public String str;

}
Custom Serialization

You can customize the serialization process by implementing the ISerializable interface on an object. This is particularly useful in cases where the value of a member variable is invalid after deserialization, but you need to provide the variable with a value in order to reconstruct the full state of the object. Implementing ISerializable involves implementing the GetObjectData method and a special constructor that will be used when the object is deserialized. The sample code below shows how to implement ISerializable on the MyObject class from a previous section.

[Serializable]

public class MyObject : ISerializable

{

 public int n1;

 public int n2;

 public String str;

 public MyObject()

 {

 }

 protected MyObject(SerializationInfo info, StreamingContext context)

 {

 n1 = info.GetInt32("i");

 n2 = info.GetInt32("j");

 str = info.GetString("k");

 }

 public virtual void GetObjectData(SerializationInfo info, StreamingContext context)

 {

 info.AddValue("i", n1);

 info.AddValue("j", n2);

 info.AddValue("k", str);

 }

}
When GetObjectData is called during serialization, you are responsible for populating the SerializationInfo provided with the method call. Simply add the variables to be serialized as name/value pairs. Any text can be used as the name. You have the freedom to decide which member variables are added to the SerializationInfo, provided that sufficient data is serialized to restore the object during deserialization. Derived classes should call the GetObjectData method on the base object if the latter implements ISerializable.

It is important to stress that you need to implement both GetObjectData as well as the special constructor when ISerializable is added to a class. The compiler will warn you if GetObjectData is missing, but since it is impossible to enforce the implementation of a constructor, no warnings will be given if the constructor is absent and an exception will be thrown when an attempt is made to deserialize a class without the constructor. The current design was favored above a SetObjectData method to get around potential security and versioning problems. For example, a SetObjectData method must be public if it is defined as part of an interface, thus users have to write code to defend themselves against having the SetObjectData method called multiple times. One can imagine the headaches that can potentially be caused by a malicious application that calls the SetObjectData method on an object that was in the process of executing some operation.

During deserialization, the SerializationInfo is passed to the class using the constructor provided for this purpose. Any visibility constraints placed on the constructor are ignored when the object is deserialized, so you can mark the class as public, protected, internal, or private. It is a good idea to make the constructor protected unless the class is sealed, in which case the constructor should be marked private. To restore the state of the object, simply retrieve the values of the variables from SerializationInfo using the names used during serialization. If the base class implements ISerializable, the base constructor should be called to allow the base object to restore its variables.

When you derive a new class from one that implements ISerializable, the derived class must implement both the constructor as well as the GetObjectData method if it has any variables that need to be serialized. The code snippet below shows how this is done using the MyObject class shown previously.

[Serializable]

public class ObjectTwo : MyObject

{

 public int num;

 public ObjectTwo() : base()

 {

 }

 protected ObjectTwo(SerializationInfo si, StreamingContext context) : base(si,context)

 {

 num = si.GetInt32("num");

 }

 public override void GetObjectData(SerializationInfo si, StreamingContext context)

 {

 base.GetObjectData(si,context);

 si.AddValue("num", num);

 }

}
Do not forget to call the base class in the deserialization constructor; if this is not done, the constructor on the base class will never be called and the object will not be fully constructed after deserialization.

Objects are reconstructed from the inside out, and calling methods during deserialization can have undesirable side effects, since the methods called might refer to object references that have not been deserialized by the time the call is made. If the class being deserialized implements the IDeserilizationCallback, the OnDeserialization method will automatically be called when the entire object graph has been deserialized. At this point, all the child objects referenced have been fully restored. A hash table is a typical example of a class that is difficult to deserialize without using the event listener described above. It is easy to retrieve the key/value pairs during deserialization, but adding these objects back to the hash table can cause problems since there is no guarantee that classes that derived from the hast table have been deserialized. Calling methods on a hash table at this stage is therefore not advisable.

Steps in the Serialization Process

When the Serialize method is called on a formatter, object serialization proceeds according to the following rules:

A check is made to determine if the formatter has a surrogate selector – if it does, check if the surrogate selector handles objects of the given type. The selector handles the object type, ISerializable.GetObjectData is called on the surrogate selector.

· If there is no surrogate selector or if it does not handle the type, a check is made to determine if the object is marked with the Serializable attribute. If it is not, a SerializationException is thrown.

· If it is marked appropriately, check if the object implements ISerializable. If it does, GetObjectData is called on the object.

· If it does not implement ISerializable, the default serialization policy is used, serializing all fields not marked as NonSerialized.

Versioning

The .NET Framework provides support for versioning and side-by-side execution, and all classes will work across versions if the interfaces of the classes remain the same. Since serializations deals with member variables and not interfaces, be cautious when adding or removing member variables to classes that will be serialized across versions. This is especially true for classes that do not implement ISerializable. Any change of state of the current version, such as the addition of member variables, changing the types of variables, or changing their names, will mean that existing objects of the same type cannot be successfully deserialized if they were serialized with a previous version.

If the state of an object needs to change between versions, class authors have two choices:

· Implement ISerializable. This allows you to take precise control of the serialization and deserialization process, allowing future state to be added and interpreted correctly during deserialization.

· Mark nonessential member variables with the NonSerialized attribute. This option should only be used when you expect minor changes between different versions of a class. For example, when a new variable has been added to a later version of a class, the variable can be marked as NonSerialized to ensure the class remains compatible with previous versions.
Serialization guidelines

You should consider serialization when designing new classes since a class cannot be made serializable after it has been compiled. Some questions to ask are: Do I have to send this class across application domains? Will this class ever be used with remoting? What will my users do with this class – maybe they derive a new class from mine that needs to be serialized? When in doubt, mark the class as serializable. It is probably better to mark all classes as serializable unless:

· They will never cross an application domain. If serialization is not required and the class needs to cross an application domain, derive the class from MarshalByRefObject.

· The class stores special pointers that are only applicable to the current instance of the class. If a class contains unmanaged memory or file handles, for example, ensure these files are marked as NonSerialized or don't serialize the class at all.

· Some of the data members contain sensitive information. In this case, it will probably be advisable to mark the class itself as serializable but mark the individual variables containing the sensitive information as NonSerialized. Another alternative is to implement ISerializable and serialize only the required fields.

XML and SOAP Serialization

XML serialization converts (serializes) the public fields and properties of an object, or the parameters and return values of methods, into an XML stream that conforms to a specific XML Schema definition language (XSD) document. XML serialization results in strongly typed classes with public properties and fields that are converted to a serial format (in this case, XML) for storage or transport.

Because XML is an open standard, the XML stream can be processed by any application, as needed, regardless of platform. For example, XML Web services created using ASP.NET use the XmlSerializer class to create XML streams that pass data between Web service applications throughout the Internet or on intranets. Conversely, deserialization takes such an XML stream and reconstructs the object.

XML serialization can also be used to serialize objects into XML streams that conform to the SOAP specification. SOAP is a protocol based on XML, designed specifically to transport procedure calls using XML.

To serialize or deserialize objects, use the XmlSerializer class. To create the classes to be serialized, use the XML Schema Definition tool.

In This Section

· Introducing XML Serialization

· Provides a general definition of serialization, particularly XML serialization.

· Examples of XML Serialization

· Provides examples that demonstrate the basics of XML serialization.

· The XML Schema Definition Tool and XML Serialization

· Describes how to use the XML Schema Definition tool to create classes that adhere to a particular XML Schema definition language (XSD) schema, or to generate an XML Schema from a .dll file.

· Controlling XML Serialization Using Attributes

· Describes how to control serialization by using attributes.

· Attributes that Control XML Serialization

· Lists the attributes used to control serialization.

· Overriding XML Serialization

· Presents an advanced scenario showing how to generate multiple XML streams by overriding the serialization.

· Working with XML Namespaces

· Describes how to define and control the way in which XML namespaces are used in the XML stream.

Introducing XML Serialization
Serialization is the process of converting an object into a form that can be readily transported. For example, you can serialize an object and transport it over the Internet using HTTP between a client and a server. On the other end, deserialization reconstructs the object from the stream.

XML serialization serializes only the public fields and property values of an object into an XML stream. XML serialization does not include type information. For example, if you have a Book object that exists in the Library namespace, there is no guarantee that it will be deserialized into an object of the same type.

Note: XML serialization does not convert methods, indexers, private fields, or read-only properties (except read-only collections). To serialize all of an object's fields and properties, both public and private, use the BinaryFormatter instead of XML serialization.

The central class in XML serialization is the XmlSerializer class, and its most important methods are the Serialize and Deserialize methods. The XML stream generated by the XmlSerializer is compliant with the World Wide Web Consortium (www.w3.org) XML Schema Definition language (XSD) 1.0 recommendation. Furthermore, the data types generated are compliant with the document titled "XML Schema Part 2: Datatypes."

The data in your objects is described using programming language constructs like classes, fields, properties, primitive types, arrays, and even embedded XML in the form of XmlElement or XmlAttribute objects. You have the option of creating your own classes, annotated with attributes, or using the XML Schema Definition tool to generate the classes based on an existing XML Schema (XSD).

If you have an XML Schema, you can run the XML Schema Definition tool to produce a set of classes that are strongly typed to the schema and annotated with attributes. When an instance of such a class is serialized, the generated XML adheres to the XML Schema. Provided with such a class, you can program against an easily manipulated object model while being assured that the generated XML conforms to the XML schema. This is an alternative to using other classes in the .NET Framework, such as the XmlReader and XmlWriter classes, to parse and write an XML stream. (For more information about using those classes, see Employing XML in the .NET Framework.) Those classes allow you to parse any XML stream. In contrast, use the XmlSerializer when the XML stream is expected to conform to a known XML Schema.

Attributes control the XML stream generated by the XmlSerializer class, allowing you to set the XML namespace, element name, attribute name, and so on, of the XML stream. For more information about these attributes and how they control XML serialization, see Controlling XML Serialization Using Attributes. For a table of those attributes that are used to control the generated XML, see Attributes that Control XML Serialization.

The XmlSerializer class can further serialize an object and generate an encoded SOAP XML stream. The generated XML adheres to section 5 of the World Wide Web Consortium document titled "Simple Object Access Protocol (SOAP) 1.1." For more information about this process, see Generating SOAP Messages With XML Serialization. For a table of the attributes that control the generated XML, see Attributes That Control Encoded SOAP Serialization.

The XmlSerializer class generates the SOAP messages created by, and passed to, XML Web services. To control the SOAP messages, you can apply attributes to the classes, return values, parameters, and fields found in an XML Web service file (.asmx). You can use both the attributes listed in "Attributes that Control XML Serialization" and "Attributes that Control Encoded SOAP Serialization" because an XML Web serivce may use either the literal or encoded SOAP style. For more information about using attributes to control the XML generated by an XML Web service, see XML Serialization with XML Web Services. For more information about SOAP and XML Web services, see Customizing SOAP Messages.

A Simple Class Serialized

The following example shows a simple class with a public field:

public class OrderForm{

 public DateTime OrderDate;

}
When an instance of this class is serialized, it might resemble the following:

<OrderForm>

 <OrderDate>12/12/01</OrderDate>

</OrderForm>
For more examples of serialization, see Examples of XML Serialization.

Items that Can Be Serialized

The following items can be serialized using the XmLSerializer class.

· Public read/write properties and fields of public classes

· Classes that implement ICollection or IEnumerable (Note that only collections are serialized, not public properties.)

· XmlElement objects

· XmlNode objects

· DataSet objects

Serializing and Deserializing Objects

To serialize an object, first create the object that is to be serialized and set its public properties and fields. To do this, you must determine the transport format in which the XML stream is to be stored — either as a stream or as a file. For example, if the XML stream must be saved in a permanent form, create a FileStream object. When you deserialize an object, the transport format determines whether you will create a stream or file object. Once the transport format is determined, you can call the Serialize or Deserialize methods, as required.

To serialize an object

1. Create the object and set its public fields and properties.

2. Construct an XmlSerializer using the type of the object. See the XmlSerializer class constructors for more information.

3. Call the Serialize method to generate either an XML stream or a file representation of the object's public properties and fields. The following example creates a file.

MySerializableClass myObject = new MySerializableClass();

// Insert code to set properties and fields of the object.

XmlSerializer mySerializer = new

XmlSerializer(typeof(MySerializableClass));

// To write to a file, create a StreamWriter object.

StreamWriter myWriter = new StreamWriter("myFileName.xml");

mySerializer.Serialize(myWriter, myObject);

To deserialize an object

1. Construct an XmlSerializer using the type of the object to deserialize.

2. Call the Deserialize method to produce a replica of the object. When deserializing, you must cast the returned object to the type of the original, as shown in the following example. The following example deserializes the object into a file, however it could also be deserialized into a stream.

MySerializableClass myObject;

// Construct an instance of the XmlSerializer with the type

// of object that is being deserialized.

XmlSerializer mySerializer =

new XmlSerializer(typeof(MySerializableClass));

// To read the file, create a FileStream object.

FileStream myFileStream =

new FileStream("myFileName.xml", FileMode.Open);

// Call the Deserialize method and cast to the object type.

myObject = (MySerializableClass)

mySerializer.Deserialize(myFileStream)

For more examples of XML serialization, see Examples of XML Serialization.

Advantages of Using XML Serialization

The XmlSerializer class gives you complete and flexible control when you serialize an object as XML. If you are creating an XML Web service, you can apply attributes that control serialization to classes and members to ensure that the XML output conforms to a specific schema.

For example, XmlSerializer enables you to:

· Specify whether a field or property should be encoded as an attribute or an element.

· Specify an XML namespace to use.

· Specify the name of an element or attribute if a field or property name is inappropriate.

Another advantage of XML serialization is the fact that you have no constraints on the applications you develop, as long as the XML stream that is generated conforms to a given schema. Imagine a schema that is used to describe books — it features a title, author, publisher, and ISBN number element. You can develop an application that processes the XML data in any way you want — for example, as a book order, or as an inventory of books. In either case, the only requirement is that the XML stream conforms to the specified XML Schema definition language (XSD) schema.

XML Serialization Considerations

The following should be considered when using the XmlSerializer class:

· Only the shape of your classes and the data is contained in the serialized data. Type identity and assembly information are not included.

· Only public properties and fields can be serialized. If you need to serialize non-public data, use the BinaryFormatter class rather than XML serialization.

· A class must have a default constructor to be serialized by XmlSerializer.

· Methods cannot be serialized.

· XmlSerializer can process classes that implement IEnumerable or ICollection differently if they meet certain requirements. A class that implements IEnumerable must implement a public Add method that takes a single parameter. The Add method's parameter must be consistent (polymorphic) with the type returned from the IEnumerator.Current property returned from the GetEnumerator method. A class that implements ICollection in addition to IEnumerable (such as CollectionBase) must have a public Item indexed property (an indexer in C#) that takes an integer, and it must have a public Count property of type integer. The parameter to the Add method must be the same type as that returned from the Item property, or one of that type's bases. For classes implementing ICollection, values to be serialized will be retrieved from the indexed Item property rather than by calling GetEnumerator. Also note that public fields and properties will not be serialized, with the exception of public fields that return another collection class (one that implements ICollection). For an example, see Examples of XML Serialization.

XSD Data Type Mapping

The World Wide Web Consortium (www.W3.org) document titled "XML Schema Part 2: Datatypes" specifies the simple data types that are allowed in an XML Schema definition language (XSD) schema. For many of these (for example, int and decimal), there is a corresponding data type in the .NET Framework. However, some XML data types do not have a corresponding data type in the .NET Framework (for example, the NMTOKEN data type). In such cases, if you use the XML Schema Definition Tool (Xsd.exe) to generate classes from a schema, an appropriate attribute is applied to a member of type string, and its DataType property is set to the XML data type name. For example, if a schema contains an element named "MyToken" with the XML data type NMTOKEN, the generated class might contain a member as shown in the following example.

[XmlElement(DataType = "NMTOKEN")]

public string MyToken;

Similarly, if you are creating a class that must conform to a specific XML Schema (XSD), you should apply the appropriate attribute and set its DataType property to the desired XML data type name.

For a complete list of type mappings, see the DataType property for any of the following attribute classes: SoapAttributeAttribute, SoapElementAttribute, XmlArrayItemAttribute, XmlAttributeAttribute, XmlElementAttribute, or XmlRootAttribute.

Examples of XML Serialization

XML serialization can take more than one form, from simple to complex. For example, you can serialize a class that simply consists of public fields and properties, as shown in Introducing XML Serialization. The following samples address various advanced scenarios, including how to use XML serialization to generate an XML stream that conforms to a specific XML Schema (XSD) document.

Serialization of a DataSet

Besides serializing an instance of a public class, an instance of a DataSet can also be serialized.

private void SerializeDataSet(string filename)

{

 XmlSerializer ser = new XmlSerializer(typeof(DataSet));

 // Create a DataSet; add a Table, coumn, and ten rows.

 DataSet ds = new DataSet("myDataSet");

 DataTable t = new DataTable("table1");

 DataColumn c = new DataColumn("thing");

 t.Columns.Add(c);

 ds.Tables.Add(t);

 DataRow r;

 for(int i = 0; i<10;i++)

 {

 r = t.NewRow();

 r[0] = "Thing " + i;

 t.Rows.Add(r);

 }

 TextWriter writer = new StreamWriter(filename);

 ser.Serialize(writer, ds);

 writer.Close();

}
Serialization of An XmlElement and XmlNode

You can also serialize instances of an XmlElement or XmlNode class.

private void SerializeElement(string filename)

{

 XmlSerializer ser = new XmlSerializer(typeof(XmlElement));

 XmlElement myElement=

 new XmlDocument().CreateElement("MyElement", "ns");

 myElement.InnerText = "Hello World";

 TextWriter writer = new StreamWriter(filename);

 ser.Serialize(writer, myElement);

 writer.Close();

}

private void SerializeNode(string filename)

{

 XmlSerializer ser = new XmlSerializer(typeof(XmlNode));

 XmlNode myNode= new XmlDocument().

 CreateNode(XmlNodeType.Element, "MyNode", "ns");

 myNode.InnerText = "Hello Node";

 TextWriter writer = new StreamWriter(filename);

 ser.Serialize(writer, myNode);

 writer.Close();

}
A Class Containing a Field Returning a Complex Object Serialized

If a property or field returns a complex object (such as an array or a class instance), the XmlSerializer converts it to an element nested within the main XML document. For example, the first class in the following code returns an instance of the second class.

public class PurchaseOrder

{

 public Address MyAddress;

}

public class Address

{

 public string FirstName;

}

The serialized XML output might resemble the following:
<PurchaseOrder>

 <Address>

 <FirstName>George</FirstName>

 </Address>

</PurchaseOrder>
An Array of Objects Serialized

You can also serialize a field that returns an array of objects. For example:

public class PurchaseOrder

{

 public Item [] ItemsOrders

}

public class Item

{

 public string ItemID

 public decimal ItemPrice

}

The serialized class instance might resemble the following, if two items are ordered:

<PurchaseOrder xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance xmlns:xsd="http://www.w3.org/20001/XMLSchema">

 <Items>

 <Item>

 <ItemID>aaa111</ItemID>

 <ItemPrice>34.22</ItemPrice>

 </Item>

 <Item>

 <ItemID>bbb222</ItemID>

 <ItemPrice>2.89</ItemPrice>

 </Item>

 </Items>

</PurchaseOrder>
Serializing a Class that Implements the ICollection Interface

You can create your own collection classes by implementing the ICollection interface, and use the XmlSerializer to serialize instances of these classes. It should be noted that when a class implements the ICollection interface, only the collection contained by the class is serialized. Any public properties or fields added to the class will not be serialized. The class must include an Add method and an Item property (C# indexer) to be serialized.

using System;

using System.IO;

using System.Collections;

using System.Xml.Serialization;

public class Test

{

 static void Main()

 {

 Test t = new Test();

 t.SerializeCollection("coll.xml");

 }

 private void SerializeCollection(string filename)

 {

 Employees Emps = new Employees();

 // Note that only the collection is serialized--not the

 // CollectionName or any other public property of the class.

 Emps.CollectionName = "Employees";

 Employee John100 = new Employee("John", "100xxx");

 Emps.Add(John100);

 Console.WriteLine(Emps.Count);

 XmlSerializer x = new XmlSerializer(typeof(Employees));

 TextWriter writer = new StreamWriter(filename);

 x.Serialize(writer, Emps);

 }

}

public class Employees:ICollection

{

 public string CollectionName;

 private ArrayList empArray = new ArrayList();

 public Employee this[int index]

 {

 get{ return (Employee) empArray[index]; }

 }

 public void CopyTo(Array a, int index)

 {

 empArray.CopyTo(a, index);

 }

 public int Count

 {

 get{ return empArray.Count; }

 }

 public object SyncRoot

 {

 get{return this;}

 }

 public bool IsSynchronized

 {

 get{return false;}

 }

 public IEnumerator GetEnumerator()

 {

 return empArray.GetEnumerator();

 }

 public void Add(Employee newEmployee)

 {

 empArray.Add(newEmployee);

 }

}

public class Employee

{

 public string EmpName;

 public string EmpID;

 public Employee(){}

 public Employee(string empName, string empID)

 {

 EmpName = empName;

 EmpID = empID;

 }

}
A Purchase Order Example

You can cut and paste the following example code into a text file renamed with a .cs or .vb file name extension. Use the C# or Visual Basic compiler to compile the file. Then run it using the name of the executable.

This example uses a simple scenario to demonstrate how an object is instantiated and serialized into a file stream using the Serialize method. The XML stream is saved to a file, and the same file is then read back and reconstructed into a copy of the original object using the Deserialize method.

In this example, a class named PurchaseOrder is serialized and then deserialized. A second class named Address is also included because the public field named ShipTo must be set to an Address object. Similarly, an OrderedItem class is included because an array of OrderedItem objects must be set to the OrderedItems field. Finally, a class named Test contains the code that serializes and deserializes the classes.

The CreatePO method creates the PurchaseOrder, Address, and OrderedItem class objects, and sets the public field values. The method also constructs an instance of the XmlSerializer class that is used to serialize and deserialize the PurchaseOrder object. Note that the code passes the type of the class that will be serialized to the constructor. The code also creates a FileStream that is used to write the XML stream to an XML document.

The ReadPo method is a little simpler. It just creates objects to deserialize and reads out their values. As with the CreatePo method, you must first construct an XmlSerializer object, passing the type of the class to be deserialized to the constructor. Also, a FileStream is required to read the XML document. To deserialize the objects, call the Deserialize method with the FileStream as an argument. The deserialized object must be cast to an object variable of the PurchaseOrder type. The code then reads the values of the deserialized PurchaseOrder object. Note that you can also read the PO.xml file that is created to see the actual XML output.

using System;

using System.Xml;

using System.Xml.Serialization;

using System.IO;

/**

 * The XmlRootAttribute allows you to set an alternate name

 * (PurchaseOrder) for the XML element and its namespace. By

 * default, the XmlSerializer uses the class name. The attribute

 * also allows you to set the XML namespace for the element. Lastly,

 * the attribute sets the IsNullable property, which specifies whether

 * the xsi:null attribute appears if the class instance is set to

 * a null reference.

**/

[XmlRootAttribute("PurchaseOrder", Namespace="http://www.cpandl.com",

IsNullable = false)]

public class PurchaseOrder

{

 public Address ShipTo;

 public string OrderDate;

 // The XmlArrayAttribute changes the XML element name

 // from the default of "OrderedItems" to "Items".

 [XmlArrayAttribute("Items")]

 public OrderedItem[] OrderedItems;

 public decimal SubTotal;

 public decimal ShipCost;

 public decimal TotalCost;

}

public class Address

{

 /**

 * The XmlAttribute instructs the XmlSerializer to serialize the Name

 * field as an XML attribute instead of an XML element (the default

 * behavior).

 **/

 [XmlAttribute]

 public string Name;

 public string Line1;

 /**

 * Setting the IsNullable property to false instructs the

 * XmlSerializer that the XML attribute will not appear if

 * the City field is set to a null reference.

 **/

 [XmlElementAttribute(IsNullable = false)]

 public string City;

 public string State;

 public string Zip;

}

public class OrderedItem

{

 public string ItemName;

 public string Description;

 public decimal UnitPrice;

 public int Quantity;

 public decimal LineTotal;

 // Calculate is a custom method that calculates the price per item,

 // and stores the value in a field.

 public void Calculate()

 {

 LineTotal = UnitPrice * Quantity;

 }

}

public class Test

{

 public static void Main()

 {

 // Read and write purchase orders.

 Test t = new Test();

 t.CreatePO("po.xml");

 t.ReadPO("po.xml");

 }

 private void CreatePO(string filename)

 {

 // Create an instance of the XmlSerializer class;

 // specify the type of object to serialize.

 XmlSerializer serializer =

 new XmlSerializer(typeof(PurchaseOrder));

 TextWriter writer = new StreamWriter(filename);

 PurchaseOrder po=new PurchaseOrder();

 // Create an address to ship and bill to.

 Address billAddress = new Address();

 billAddress.Name = "Teresa Atkinson";

 billAddress.Line1 = "1 Main St.";

 billAddress.City = "AnyTown";

 billAddress.State = "WA";

 billAddress.Zip = "00000";

 // Set ShipTo and BillTo to the same addressee.

 po.ShipTo = billAddress;

 po.OrderDate = System.DateTime.Now.ToLongDateString();

 // Create an OrderedItem object.

 OrderedItem i1 = new OrderedItem();

 i1.ItemName = "Widget S";

 i1.Description = "Small widget";

 i1.UnitPrice = (decimal) 5.23;

 i1.Quantity = 3;

 i1.Calculate();

 // Insert the item into the array.

 OrderedItem [] items = {i1};

 po.OrderedItems = items;

 // Calculate the total cost.

 decimal subTotal = new decimal();

 foreach(OrderedItem oi in items)

 {

 subTotal += oi.LineTotal;

 }

 po.SubTotal = subTotal;

 po.ShipCost = (decimal) 12.51;

 po.TotalCost = po.SubTotal + po.ShipCost;

 // Serialize the purchase order, and close the TextWriter.

 serializer.Serialize(writer, po);

 writer.Close();

 }

 protected void ReadPO(string filename)

 {

 // Create an instance of the XmlSerializer class;

 // specify the type of object to be deserialized.

 XmlSerializer serializer = new XmlSerializer(typeof(PurchaseOrder));

 // If the XML document has been altered with unknown

 // nodes or attributes, handle them with the

 // UnknownNode and UnknownAttribute events.

 serializer.UnknownNode += new

 XmlNodeEventHandler(serializer_UnknownNode);

 serializer.UnknownAttribute += new

 XmlAttributeEventHandler(serializer_UnknownAttribute);

 // A FileStream is needed to read the XML document.

 FileStream fs = new FileStream(filename, FileMode.Open);

 // Declare an object variable of the type to be deserialized.

 PurchaseOrder po;

 // Use the Deserialize method to restore the object's state with

 // data from the XML document.

 po = (PurchaseOrder) serializer.Deserialize(fs);

 // Read the order date.

 Console.WriteLine ("OrderDate: " + po.OrderDate);

 // Read the shipping address.

 Address shipTo = po.ShipTo;

 ReadAddress(shipTo, "Ship To:");

 // Read the list of ordered items.

 OrderedItem [] items = po.OrderedItems;

 Console.WriteLine("Items to be shipped:");

 foreach(OrderedItem oi in items)

 {

 Console.WriteLine("\t"+

 oi.ItemName + "\t" +

 oi.Description + "\t" +

 oi.UnitPrice + "\t" +

 oi.Quantity + "\t" +

 oi.LineTotal);

 }

 // Read the subtotal, shipping cost, and total cost.

 Console.WriteLine(

 "\n\t\t\t\t\t Subtotal\t" + po.SubTotal +

 "\n\t\t\t\t\t Shipping\t" + po.ShipCost +

 "\n\t\t\t\t\t Total\t\t" + po.TotalCost

);

 }

 protected void ReadAddress(Address a, string label)

 {

 // Read the fields of the Address object.

 Console.WriteLine(label);

 Console.Write("\t"+

 a.Name +"\n\t" +

 a.Line1 +"\n\t" +

 a.City +"\t" +

 a.State +"\n\t" +

 a.Zip +"\n");

 }

 protected void serializer_UnknownNode

 (object sender, XmlNodeEventArgs e)

 {

 Console.WriteLine("Unknown Node:" + e.Name + "\t" + e.Text);

 }

 protected void serializer_UnknownAttribute

 (object sender, XmlAttributeEventArgs e)

 {

 System.Xml.XmlAttribute attr = e.Attr;

 Console.WriteLine("Unknown attribute " +

 attr.Name + "='" + attr.Value + "'");

 }

}
The XML output might resemble the following:

<?xml version="1.0" encoding="utf-8"?>

<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.cpandl.com">

 <ShipTo Name="Teresa Atkinson">

 <Line1>1 Main St.</Line1>

 <City>AnyTown</City>

 <State>WA</State>

 <Zip>00000</Zip>

 </ShipTo>

 <OrderDate>Wednesday, June 27, 2001</OrderDate>

 <Items>

 <OrderedItem>

 <ItemName>Widget S</ItemName>

 <Description>Small widget</Description>

 <UnitPrice>5.23</UnitPrice>

 <Quantity>3</Quantity>

 <LineTotal>15.69</LineTotal>

 </OrderedItem>

 </Items>

 <SubTotal>15.69</SubTotal>

 <ShipCost>12.51</ShipCost>

 <TotalCost>28.2</TotalCost>

</PurchaseOrder>
The XML Schema Definition Tool and XML Serialization

The XML Schema Definition Tool (Xsd.exe) is installed along with the .NET Framework Tools as part of the .NET Framework SDK. The tool is designed primarily for two purposes:

· To generate either C# or Visual Basic class files that conform to a specific XML Schema definition language (XSD) schema. The tool takes an XML Schema as an argument and outputs a file that contains a number of classes that, when serialized with the XmlSerializer, conform to the schema.

· To generate an XML Schema document from a DLL or EXE. If you need to see the schema of a set of files that you have either created or one that has been modified with attributes, pass the DLL or EXE as an argument to the tool to generate the XML schema.

For details on this tool (and others), see .NET Framework Tools. For details about the tool's options, see XML Schema Definition Tool (Xsd.exe).

To generate classes that conform to a specific schema

1. Open a Command Prompt window.

2. Pass the XML Schema as an argument to the XML Schema Definition tool, which creates a set of classes that are precisely matched to the XML Schema. For example:

xsd mySchema.xsd

The tool can only process schemas that reference the World Wide Web Consortium XML specification of March 16, 2001. In other words, the XML schema namespace must be "http://www.w3.org/2001/XMLSchema" as shown in the following example.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="qualified" elementFormDefault="qualified" targetNamespace="" xmlns:xs="http://www.w3.org/2001/XMLSchema">

3. Modify the classes with methods, properties, or fields, as necessary. For more information about modifying a class with attributes, see Controlling XML Serialization Using Attributes and Attributes that Control XML Serialization.

It is often useful to examine the schema of the XML stream that is generated when instances of a class (or classes) are serialized. For example, you might publish your schema for others to use, or you might compare it to a schema with which you are trying to achieve conformity.

To generate an XML Schema Document from a set of classes

1. Compile the class or classes into a DLL.

2. Open a Command Prompt window.

3. Pass the DLL as an argument to Xsd.exe. For example:

xsd MyFile.dll

The schema (or schemas) will be written, beginning with the name "schema0.xsd".

Controlling XML Serialization Using Attributes

Attributes can be used to control the XML serialization of an object, or to create an alternate XML stream from the same set of classes. For more details about creating an alternate XML stream, see Overriding XML Serialization.

Note: If the XML generated must conform to section 5 of the World Wide Web Consortium (www.w3.org) document titled "Simple Object Access Protocol (SOAP) 1.1," use the attributes listed in Attributes That Control Encoded SOAP Serialization.

By default, an XML element name is determined by the class or member name. In a simple class named Book, a field named ISBN will produce an XML element tag <ISBN>, as shown in the following example.

public class Book

{

 public string ISBN;

}

// When an instance of the Book class is serialized, it might

// produce this XML:

// <ISBN>1234567890</ISBN>
This default behavior might not be appropriate if the element name is invalid as a member name. For example, an XML element that determines a tax rate might be named "2ReturnTaxRate." It would be impossible to give a member the same name since a member name cannot begin with a number. You can, however, give the member a valid name such as "ToReturnTaxRate". Attributes enable you to have it both ways — the member name can be " ToReturnTaxRate" but, after serialization, the XML element name is "2ReturnTaxRate". The following code shows how an attribute enables this by setting the ElementName property of an XmlElementAttribute.

public class TaxRates{

 [XmlElement(ElementName = "2ReturnTaxRate")]

 public decimal ToReturnTaxRate;

}

For more information about attributes, see Extending Metadata Using Attributes. For a list of attributes that control XML serialization, see Attributes that Control Serialization.

To control serialization with attributes

1. Apply one of the special attributes to the class or class member. For a list of those attributes that specifically control serialization, see Attributes that Control Serialization.

2. Modify the member of the class, if needed. For example, change the name of a member, but set the ElementName property to an appropriate value — that is, one that conforms to the XML Schema (XSD) of the serialized object.

3. Serialize or deserialize the class instance.

The resulting XML stream will conform to the schema, but the class will have a human-readable method name.

Controlling Array Serialization

The XmlArrayAttribute and the XmlArrayItemAttribute attributes are designed to control the serialization of arrays. Using these attributes, you can control the element name, namespace, and XML Schema (XSD data type (as defined in the World Wide Web Consortium [www.w3.org] document titled "XML Schema Part 2: Datatypes"). You can also specify the types that can be included in an array.

The XmlArrayAttribute will determine the properties of the enclosing XML element that results when an array is serialized. For example, by default, serializing the array below will result in an XML element named "Employees". The Employees element will contain a series of elements named after the array type "Employee".

public class Group
{

 public Employee[] Employees;

}

public class Employee
{

 public string Name;

}

A serialized instance might resemble the following:

<Group>

<Employees>

 <Employee>

 <Name>Haley</Name>

 </Employee>

</Employees >

</Group>

By applying an XmlArrayAttribute, you can change the name of the XML element, as follows.

public class Group
{

 [XmlArray("TeamMembers")]

 public Employee[] Employees;

}

The resulting XML might resemble the following:

<Group>

<TeamMembers>

 <Employee>

 <Name>Haley</Name>

 </Employee>

</TeamMembers>

The XmlArrayItemAttribute, on the other hand, controls how the items contained in the array are serialized. Note in the following example that the attribute is applied to the field returning the array.

public class Group{

 [XmlArrayItem("MemberName")]

 public Employee[] Employees;

}

The resulting XML might resemble the following:

<Group>

<Employees>

 <MemberName>Haley</MemberName>

</Employees>

</Group>

Serializing Derived Classes

Another use of the XmlArrayItemAttribute is to allow the serialization of derived classes. For example, another class named Manager that derives from Employee can be added to the previous example. If you do not apply the XmlArrayItemAttribute, the code will fail at run time because the derived class type will not be recognized. To remedy this, apply the attribute twice, each time setting the XmlArrayItemAttribute.Type property for each acceptable type (base and derived).

public class Group
{

 [XmlArrayItem(Type = typeof(Employee)),

 XmlArrayItem(Type = typeof(Manager))]

 public Employee[] Employees;

}

public class Employee
{

 public string Name;

}

public class Manager:Employee
{

 public int Level;

}

A serialized instance might resemble this:

<Group>

<Employees>

 <Employee>

 <Name>Haley</Name>

 </Employee>

 <Employee xsi:type = "Manager">

 <Name>Ann</Name>

 <Level>3</Level>

 <Employee>

</Employees >

</Group>

Serializing an Array as a Sequence of Elements

You can also serialize an array as a "flat" sequence of XML elements by applying an XmlElementAttribute to the field returning the array as follows.

public class Group{

 [XmlElement]

 public Employee[] Employees;

}

A serialized instance might resemble the following:

<Group>

<Employees>

 <Name>Haley</Name>

</Employees>

<Employees>

 <Name>Noriko</Name>

</Employees>

<Employees>

 <Name>Marco</Name>

</Employees>

</Group>

Another way to differentiate the two XML streams is to use the XML Schema Definition tool to generate the XML Schema (XSD) document files from the compiled code. (For more details on using the tool, see The XML Schema Definition Tool and XML Serialization.) When no attribute is applied to the field, the schema describes the element in the following manner.
<xs:element minOccurs="0" maxOccurs ="1" name="Employees" type="ArrayOfEmployee" />

When the XmlElementAttribute is applied to the field, the resulting schema describes the element as follows.
<xs:element minOccurs="0" maxOccurs="unbounded" name="Employees" type="Employee" />

Serializing an ArrayList

The ArrayList class can contain a collection of diverse objects. You can therefore use an ArrayList much as you use an array. Instead of creating a field that returns an array of typed objects, however, you can create a field that returns a single ArrayList. However, as with arrays, you must inform the XmlSerializer what kinds of objects are contained in the ArrayList. To accomplish this, assign multiple instances of the XmlElementAttribute to the field, as shown in the following example.

public class Group
{
 [XmlElement(Type = typeof(Employee)),

 XmlElement(Type = typeof(Manager))]

 public ArrayList Info;

}

Controlling Serialization of Classes Using XmlRootAttribute and XmlTypeAttribute

There are two attributes that can be applied to a class (and only a class): XmlRootAttribute and XmlTypeAttribute. These attributes are very similar. The XmlRootAttribute can be applied to only one class: the class that, when serialized, represents the XML document's opening and closing element — in other words, the "root" element. The XmlTypeAttribute, on the other hand, can be applied to any class, including the root class.

For example, in the previous examples, the Group class is the root class, and all its public fields and properties become the XML elements found in the XML document. Therefore, there can be only one root class. By applying the XmlRootAttribute, you can control the XML stream generated by the XmlSerializer. For example, you can change the element name and namespace.

The XmlTypeAttribute allows you to control the schema of the generated XML. This capability is useful when you need to publish the schema through a Web Service. The example below applies both the XmlTypeAttribute and the XmlRootAttribute to the same class.

[XmlRoot("NewGroupName")]

[XmlType("NewTypeName")]

public class Group
{

 public Employee[] Employees;

}
If this class is compiled, and the XML Schema Definition tool is used to generate its schema, you would find the following XML describing Group.
<xs:element name="NewGroupName" type="NewTypeName">

In contrast, if you were to serialize an instance of the class, only NewGroupName would be found in the XML document.

<NewGroupName>

 . . .

</NewGroupName>

Preventing Serialization with the XmlIgnoreAttribute

There may be situations when a public property or field doesn't need to be serialized. For example, a field or property could be used to contain metadata. In such cases, apply the XmlIgnoreAttribute to the field or property and the XmlSerializer will skip over it.

Attributes that Control XML Serialization

You can apply the attributes in the following table to classes and class members to control the way in which the XmlSerializer serializes or deserializes an instance of the class. To understand how these attributes control XML serialization, see Controlling XML Serialization Using Attributes.

These attributes can also be used to control the literal style SOAP messages generated by an XML Web service. For more information about applying these attributes to a web method, see XML Serialization with XML Web Services.

For more information about attributes, see Extending Metadata Using Attributes.
	Attribute
	Applies To
	Specifies

	XmlAnyAttributeAttribute
	Public field, property, parameter, or return value that returns an array of XmlAttribute objects.
	When deserializing, the array will be filled with XmlAttribute objects that represent all XML attributes unknown to the schema.

	XmlAnyElementAttribute
	Public field, property, parameter, or return value that returns an array of XmlElement objects.
	When deserializing, the array is filled with XmlElement objects that represent all XML elements unknown to the schema.

	XmlArrayAttribute
	Public field, property, parameter, or return value that returns an array of complex objects.
	The members of the array will be generated as members of an XML array.

	XmlArrayItemAttribute
	Public field, property, parameter, or return value that returns an array of complex objects.
	The derived types that can be inserted into an array. Usually applied in conjunction with an XmlArrayAttribute.

	XmlAttributeAttribute
	Public field, property, parameter, or return value.
	Specifies that the member will be serialized as an XML attribute.

	XmlChoiceIdentifierAttribute
	Public field, property, parameter, or return value.
	The member can be further disambiguated by using an enumeration.

	XmlElementAttribute
	Public field, property, parameter, or return value.
	The field or property will be serialized as an XML element.

	XmlEnumAttribute
	Public field that is an enumeration identifier.
	The element name of an enumeration member.

	XmlIgnoreAttribute
	Public properties and fields.
	The property or field should be ignored when the containing class is serialized.

	XmlIncludeAttribute
	Public derived class declarations, and return values of public methods (for Web Service Description Language (WSDL) documents).
	The class should be included when generating schemas (to be recognized when serialized).

	XmlRootAttribute
	Public class declarations.
	The class represents the root element of the XML document. Use the attribute to further specify the namespace and element name.

	XmlTextAttribute
	Public properties and fields.
	The property or field should be serialized as XML text.

	XmlTypeAttribute
	Public class declarations.
	The name and namespace of the XML type.

In addition to these attributes, which are all found in the System.Xml.Serialization namespace, you can also apply the System.ComponentModel.DefaultValueAttribute attribute to a field. The DefaultValueAttribute sets the value that will be automatically assigned to the member if no value is specified.

To control encoded SOAP XML serialization, see Attributes That Control Encoded SOAP Serialization.

Overriding XML Serialization

Using the XmlSerializer, you can generate more than one XML stream with the same set of classes. You may want to do this because two different Web services require the same basic information, with only slight differences. For example, imagine two Web services that process orders for books, and thus both require ISBN numbers. One service uses the tag <ISBN> while the second uses the tag <BookID>. You have a class named Book that contains a field named ISBN. When an instance of the Book class is serialized, it will, by default, use the member name (ISBN) as the tag element name. For the first Web service, this is as expected. But to send the XML stream to the second Web service, you must override the serialization so that the tag's element name is BookID.

To create an XML stream with an alternate element name

1. Create an XmlElementAttribute object.

2. Set the ElementName of the object to "BookID".

3. Create an XmlAttributes object.

4. Add the XmlElementAttribute object to the collection accessed through the XmlElements property of the XmlAttributes object.

5. Create an XmlAttributeOverrides object.

6. Add the XmlAttributes object to the XmlAttributeOverrides object, passing the type of the object to override and the name of the member being overridden.

7. Create an instance of XmlSerializer with the XmlAttributeOverrides object.

8. Create an instance of the Book class, and serialize or deserialize it.

The following code example demonstrates this serialization process.

public class SerializeOverride()

{

 // Create an XmlElementAttribute with the alternate name.

 XmlElementAttribute myElementAttribute = new XmlElementAttribute();

 myElementAttribute.ElementName = "BookID";

 XmlAttributes myAttributes = new XmlAttributes();

 myAttributes.XmlElements.Add(myElementAttribute);

 XmlAttributeOverrides myOverrides = new XmlAttributeOverrides();

 myOverrides.Add(typeof(Book), "ISBN", myAttributes);

 XmlSerializer mySerializer =

 new XmlSerializer(typeof(Book), myOverrides)

 Book b = new Book();

 b.ISBN = "123456789"

 // Create a StreamWriter to write the XML stream to.

 StreamWriter writer = new StreamWriter("Book.xml");

 mySerializer.Serialize(writer, b);

}

The XML stream might resemble the following:
<Book>

 <BookID>123456789</BookID>

</Book>
Overriding Classes

You can also create an alternate XML stream by deriving from existing classes and instructing the XmlSerializer to serialize those classes. For example, given the Book class above, you may derive from it and create an ExpandedBook class that has a few more properties. However, you must instruct the XmlSerializer to accept the derived type when serializing or deserializing. This can be done by creating an XmlElementAttribute and setting its Type property to the derived class type. Add the XmlElementAttribute to an XmlAttributes. Then add the XmlAttributes to an XmlAttributeOverrides, specifying the type being overridden and the name of the member that accepts the derived class. This is shown in the following example.

public class Orders

{

 public Book[] Books;

}

public class Book

{

 public string ISBN;

}

public class ExpandedBook:Book

{

 public bool NewEdition;

}

public class Run

{

 public void SerializeObject(string filename)

 {

 // Each overridden field, property, or type requires

 // an XmlAttributes object.

 XmlAttributes attrs = new XmlAttributes();

 // Create an XmlElementAttribute to override the

 // field that returns Book objects. The overridden field

 // returns Expanded objects instead.

 XmlElementAttribute attr = new XmlElementAttribute();

 attr.ElementName = "NewBook";

 attr.Type = typeof(ExpandedBook);

 // Add the element to the collection of elements.

 attrs.XmlElements.Add(attr);

 // Create the XmlAttributeOverrides object.

 XmlAttributeOverrides attrOverrides = new XmlAttributeOverrides();

 // Add the type of the class that contains the overridden

 // member and the XmlAttributes to override it with to the

 // XmlAttributeOverrides object.

 attrOverrides.Add(typeof(Orders), "Books", attrs);

 // Create the XmlSerializer using the XmlAttributeOverrides.

 XmlSerializer s =

 new XmlSerializer(typeof(Orders), attrOverrides);

 // Writing the file requires a TextWriter.

 TextWriter writer = new StreamWriter(filename);

 // Create the object that will be serialized.

 Orders myOrders = new Orders();

 // Create an object of the derived type.

 ExpandedBook b = new ExpandedBook();

 b.ISBN= "123456789";

 b.NewEdition = true;

 myOrders.Books = new ExpandedBook[]{b};

 // Serialize the object.

 s.Serialize(writer,myOrders);

 writer.Close();

 }

 public void DeserializeObject(string filename)

 {

 XmlAttributeOverrides attrOverrides =

 new XmlAttributeOverrides();

 XmlAttributes attrs = new XmlAttributes();

 // Create an XmlElementAttribute to override the

 // field that returns Book objects. The overridden field

 // returns Expanded objects instead.

 XmlElementAttribute attr = new XmlElementAttribute();

 attr.ElementName = "NewBook";

 attr.Type = typeof(ExpandedBook);

 // Add the XmlElementAttribute to the collection of objects.

 attrs.XmlElements.Add(attr);

 attrOverrides.Add(typeof(Orders), "Books", attrs);

 // Create the XmlSerializer using the XmlAttributeOverrides.

 XmlSerializer s =

 new XmlSerializer(typeof(Orders), attrOverrides);

 FileStream fs = new FileStream(filename, FileMode.Open);

 Orders myOrders = (Orders) s.Deserialize(fs);

 Console.WriteLine("ExpandedBook:");

 // The difference between deserializing the overridden

 // XML document and serializing it is this: To read the derived

 // object values, you must declare an object of the derived type

 // and cast the returned object to it. */

 ExpandedBook expanded;

 foreach(Book b in myOrders.Books)

 {

 expanded = (ExpandedBook)b;

 Console.WriteLine(

 expanded.ISBN + "\n" +

 expanded.NewEdition);

 }

 }

}
Saving the Properties of Components

Occasionally, you will find it necessary to save the state of your component. You might do this to save personal information about users of your component, or to change the default configuration of a custom control, for example.

You can persist the state of a component to a file through a process called serialization. Serialization allows an object to be converted to a stream of data, which can then be saved to a file. The stream can be converted to an object again through deserialization.

The .NET Framework provides two formatters for serialization: The BinaryFormatter Class and SoapFormatter Class. These classes walk an object graph (an in-memory representation of your object) currently in memory and convert it to a stream of data. As their respective names imply, the BinaryFormatter converts the object graph to a binary stream (which is most useful for desktop applications), and the SOAPFormatter converts the object graph to Simple Object Access Protocol (SOAP) format (which is most useful for Internet applications). These streams can then be saved as files that can be deserialized and converted back to objects when needed.

Serializing the Stream

To save the state of your component

1. Apply the SerializableAttribute attribute to the component you want to serialize.

[Serializable()]

public class Account

{

// ' Insert code to implement class.

}
2. Create an instance of this class as the object you want to save.

Account myAccount = new Account();

3. Create a Stream object as a file to provide a repository for your serialized data.

using System.IO;

// This creates a new file with the name SavedAccount.txt, and creates

// a Stream object to write data to that file.

Stream myFileStream = File.Create("SavedAccount.txt");

4. Create an instance of a formatter class.

· If you want to convert the object graph to a binary stream, create an instance of the BinaryFormatter class.

using System.Runtime.Serialization.Formatters.Binary;

BinaryFormatter serializer = new BinaryFormatter();

· If you want to convert the object graph to a SOAP stream, create an instance of the SoapFormatter class.

Note You must have a reference in your project to the System.Runtime.Serialization.Formatters.Soap namespace.

using System.Runtime.Serialization.Formatters.Soap;

SoapFormatter serializer = new SoapFormatter();

5. Call the Serialize method of your formatter to write your object to your Stream.

serializer.Serialize(myFileStream, myAccount);

myFileStream.Close();

6. Close the file stream to complete serialization.

You now have a saved instance of your object in binary form in the file SavedAccount.txt.

Deserializing the Stream

After you have saved you object, you will want to retrieve it at some point. The same formatter you used to serialize your component can be used to deserialize it.

To restore a saved component

1. Declare a variable of the same type as the class you want to restore.

Account restoredAccount;

2. Create a Stream object and open the file that contains the serialized object.

using System.IO;

Stream myFileStream = File.OpenRead("SavedAccount.txt");

3. Create an instance of the same type of formatter class that was used to serialize the data.

· The following example shows how to use the BinaryFormatter class.
using System.Runtime.Serialization.Formatters.Binary;

BinaryFormatter deserializer = new BinaryFormatter();

· The following example shows how to use the SoapFormatter class.

Note You must have a reference to the System.Runtime.Serialization.Formatters.Soap namespace already in your project.

using System.Runtime.Serialization.Formatters.Soap;

BinaryFormatter deserializer = new SoapFormatter();

4. Call the Deserialize method of your formatter to convert the file stream into an object graph, and use the CType function (Visual Basic) or an explicit cast (C#) to convert the object graph into an object of the desired type.

// The explicit cast converts the file stream to an object of the type // specified. If the object in the file stream cannot be converted to // the specified type, an error will result.

restoredAccount = (Account)(deserializer.Deserialize(myFileStream));

myFileStream.Close();
PAGE
2

