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Abstract Distributed learning in expert referral networks is an emerg-
ing challenge in the intersection of Active Learning and Multi-Agent
Reinforcement Learning, where experts—humans or automated agents—
can either solve problems themselves or refer said problems to others
with more appropriate expertise. Recent work demonstrated methods
that can substantially improve the overall performance of a network and
proposed a distributed referral-learning algorithm, DIEL (Distributed
Interval Estimation Learning), for learning appropriate referral choices.
This paper augments the learning setting with a proactive skill posting
step where experts can report some of their top skills to their colleagues.
We found that in this new learning setting with meaningful priors, a
modified algorithm, proactive-DIEL, performed initially much better and
reached its maximum performance sooner than DIEL on the same data
set used previously. Empirical evaluations show that the learning algo-
rithm is robust to random noise in an expert’s estimation of her own
expertise, and there is little advantage in misreporting skills when the rest
of the experts report truthfully, i.e., the algorithm is near Bayesian-Nash
incentive-compatible.
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1 Introduction

Consider a network of experts with differing expertise, where any expert may
receive a problem (aka a task or a query) and must decide whether to work on
it or to refer the problem, and if so to which other expert. For instance, in a
clinical network, a physician may diagnose and treat a patient or refer the patient
to another physician whom she believes may have more appropriate knowledge,
given the presenting symptoms. The referring physician may charge a referral fee
and the receiving physician may charge a larger fee for diagnosing and treating
the patient. Referral networks are common across other professions as well, such
as members of large consultancy firms. If the experts are software agents, then
the need for referral may be greater, given the likely narrower “expertise” typical
of intelligent agents (including old-style expert systems). We can also envision a
hybrid referral network comprising automated agents and possibly crowd-sourced
human experts.

How does a network or how do individual experts in the network learn to refer
effectively? Human referral networks are neither hardwired nor static. Potentially
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much larger networks of automated experts or hybrid networks with dynamic
membership must likewise learn to refer with membership drift. One option is
to maintain a global index and/or a “boss agent” telling all the others when to
try and solve a problem or when to refer and to whom. In practice, however – in
medicine, in academia, or in consulting companies – referrals occur to those one
knows and trusts to do a good job. Hence a distributed learning setting, although
it poses greater challenges to learning referrals, is a more realistic alternative.

To this end, a simple yet effective learning-to-refer method, dubbed DIEL
(Distributed Interval Estimation Learning), has been proposed in (7). The referral
model assumes an initial sparse topology of a static referral graph where each
expert knows a handful of colleagues so that E ∼ O(V ) (E and V denote the
number of edges and vertexes in the network, respectively). Learning consists
of each expert improving its estimates of the ability of colleagues to solve
different classes of problems. On a wide range of simulations with different
network structures and parameters chosen to represent possible real-life scenarios,
DIEL consistently outperformed greedy (Distributed Mean-Tracking, DMT)
and random baselines, and Q-learning variants. However, all such experiments
assumed an uninformative prior on the expertise of colleagues which may not
correspond to a real-world setting. Moreover, in real life, we often see that experts
clearly mention which type of tasks they are particularly good at and also often
forge links to their colleagues via social networks. In turn, their colleagues may
re-estimate their beliefs of expertise levels based on actual performance.

In this work, we augment the original DIEL expertise-learning setting with a
local-network advertisement of expertise-by-topic by each expert in the network.
Our primary contribution is this augmented learning setting and a distributed
referral-learning algorithm, proactive-DIEL, that takes advertised priors from
other colleagues into account. On the same data set used in (7), with an accu-
rate estimate of true skill and truthful reporting proactive-DIEL substantially
outperformed DIEL in the initial phase of learning. Additionally, we found that
proactive-DIEL is robust to limited Gaussian noise in an expert’s estimation of
her own skills. Also, our experimental evaluations reveal that proactive-DIEL
displays empirical evidence of being near Bayesian-Nash incentive-compatible, i.e.,
when all the other experts are truthful, lying about one’s own level of expertise
has little or no advantage.

The rest of the paper is organized as follows. We first illustrate the basic
referral mechanism through a small example. After a discussion of related work,
we present the list of assumptions on the referral network and expertise. Next,
we describe our distributed learning algorithms and experimental setup, after
which we present and discuss the results from our experiments. Finally, we end
with some general conclusions and an outlook on future work.

2 Referral Mechanism

We illustrate the referral mechanism and its effectiveness with the simple graph
of Figure 1 (taken from (7)), which represents a five-expert network.
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Figure 1. A referral network with five experts.

The nodes of the graph are the experts, and the edges indicate that the experts
‘know’ each other, that is, they can send or receive referrals and communicate
results. In the domain, three different topics (subdomains) can be distinguished –
call them t1, t2, and t3 – and the figures in brackets indicate an expert’s expertise
in each of these.

In this referral network, with a query belonging to t2, if there was no referral,
the client may consult first e2 and then possibly e5, leading to a probability of
getting the correct answer of 0.2+(1−0.2)×0.2 = 0.36. With referrals, an expert
handles a problem she knows how to answer, and otherwise if she had knowledge
of all the other experts’ expertise she could ask e2 who would refer to e3 for the
best skill in t2, leading to a solution probability of 0.2 + (1− 0.2)× 0.8 = 0.84.

The referral mechanism consists of the following steps.

1. A user issues an initial query to an initial expert, chosen from a prior distri-
bution, e.g. uniform: equiprobably among all experts, or based on proactive-
social-net advertisement priors.

2. The initial expert examines the instance. If she is able to solve it, she returns
the solution or label to the user.

3. If she is not able to solve the problem, she issues a referral query to a referred
expert, i.e. colleague who may be better able to solve the problem. Learning-
to-refer means improving the estimate of who is most likely to solve the
problem and/or, which expert should best be sampled in order to learn their
level of expertise on the topic of the problem.

4. If the referred expert succeeds, she communicates the solution to the initial
expert, who in turn, communicates it to the user.

3 Related Work

In terms of the learning setting and referral learning algorithm, our primary
basis for this work is (7) which first proposed a novel learning setting in the
context of Active learning where experts are connected through a network and
can refer instances to one another. We augment this learning setting by allowing
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advertisement to colleagues, and modify the proposed algorithm DIEL both for
improved performance and to encourage incentive compatibility. The referral
learning algorithm proposed in (7) builds upon a chain of research on interval
estimation learning, a reinforcement learning technique which strives to strike a
balance between exploration and exploitation first proposed in (4; 5), which has
been successfully used in the context of estimating accuracy of multiple labelers
in (3). The referral framework draws inspiration from earlier work in referral
chaining, first proposed in (6) and subsequently extended in(11; 12; 14; 13).

The primary focus of our work is presenting an extended learning setting
by augmenting the existing referral framework with proactive skill posting and
designing an appropriate distributed referral learning algorithm. However, in a
real-world application, success will depend on preventing experts from misreport-
ing their true skills as they advertise (e.g. to acquire more business). Among a
large body of literature in truthful mechanism design (1; 2; 10; 9) we highlight
a few key differences with the budgeted multi-armed bandit mechanism motivated
by crowdsourcing platforms presented in (2). First, while learning-to-refer can
be interpreted as a multi-armed bandit problem where each arm is a referral
choice, our work deals with several such parallel multi-armed bandit problems in
a distributed network setting. Also, in our setting each individual expert needs
to learn appropriate referral choices based on topics and expertise estimates of
colleagues on said topics. This is in contrast with homogeneous tasks, for example
as considered in (2). Finally, proactive-DIEL deals with partially available priors
since experts are not bidding for all the topics because of a restricted adver-
tisement budget (a factor (2) did not need to consider because of homogeneous
tasks).

For similar reasons, our work differs from past work studying the communica-
tion between experts and non-experts in crowdsourcing. In (8), domain experts
break down a complex task into simpler micro-tasks and actively supervise the
non-expert crowd. In our approach, there is no such simplifying assumption: it is
highly unlikely that one expert Pareto dominates other experts in a professional
network across all topics. Instead, referral is bi-directional, and the main focus is
on learning appropriate referral choices in a distributed manner.

4 Referral Networks

We follow the same notation, general setting for referral mechanism, and initial
set of assumptions as in (7), which we describe here in further detail. Section 4.4
presents the additional assumptions and mechanisms for proactive skill posting
first introduced in this paper.

4.1 Notation

– A referral network can be represented by a graph (V, E) of size k in which
each vertex vi corresponds to an expert ei and each bidirectional edge ⟨vi, vj⟩
indicates a referral link.



Proactive Skill Posting in Referral Networks 5

– We call the set of experts linked to an expert ei via a referral link, the
subnetwork of expert ei.

– A scenario is a set of m queries (q1, . . . , qm) belonging to n topics (t1, . . . , tn),
to be addressed by the k experts (e1, . . . , ek).

– As expertise for an expert-instance pair we simply take the probability that she
can successfully solve the problem, i.e., Expertise(ei, qj) = P (solve(ei, qj)).

4.2 Initial Expert and Expertise assumptions

Topic-wise distributional assumption: We take the expertise distribution
for a given topic t to be a mixture of two truncated Gaussians (with parameters
λ = {wt

i , µt
i, σt

i} i = 1, 2.). One of them (N (µt
2, σt

2)) has a greater mean (µt
2 > µt

1),
smaller variance (σt

2 < σt
1) and lower mixture weight (wt

2 << wt
1). Intuitively,

this represents the expertise of experts with specific training for the given topic,
contrasted with the lower-level expertise of the layman population.

Instance-wise distributional assumption: We model the expertise of a
given expert on instances under a topic by a truncated Gaussian distribution
with small variance. i.e.,
Expertise(ei, qj) ∼ N (µtopicp,ei

, σtopicp,ei
),

∀qj ∈ topicp,∀p, i : σtopicp,ei ≤ 0.2.
We further assume that an expert can accurately identify the topic of a query,

that expertise does not change over time (but see future work in the conclusion),
and that experts have no capacity constraints.

4.3 Network assumption

The probability that a referral link exists between expert ei and ej is a function
of how similar the two experts are, which we modeled as
P (ReferralLink(vi, vj)) = τ + c Sim(ei, ej). As a similarity metric we used cosine
similarity of topic-means. The parameter τ captures any extraneous reason two
experts can be connected, e.g., same geolocation, common acquaintances, etc.

4.4 Proactive skill posting

An advertising unit is a tuple ⟨ei, ej , tk, µtk
⟩, where ei is the target expert, ej is

the advertising expert, tk is the topic and µtk
is ej ’s (advertised) topical expertise.

We initially assume that experts can estimate their expertise (topic-means)
accurately, and report truthfully. We assume each expert is allocated a budget of
B advertising units, where B is twice the size of that expert’s subnetwork. The
advertising budget addresses the limited time that experts have to socialize with
different colleagues and get to know each other’s experience.

The advertising expert ej reports to each target expert ei in her subnetwork
the two tuples ⟨ei, ej , tbest, µtbest

⟩ and ⟨ei, ej , tsecondBest, µtsecondBest
⟩, i.e., the top

two topics in terms of the advertising expert’s topic means. This is a one-time
advertisement and happens right at the beginning of the simulation.
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5 Distributed Referral Learning

In this section, we first present interval estimation learning (3) which is the
primary building block of DIEL. Next, we outline the steps for DIEL and present
the key ways in which proactive-DIEL differs.

5.1 Interval Estimation Learning

Input: A set of k experts e1, e2, ..., ek. A set of n topics topic1, topic2, ...,
topicn. A k × k referral network.

Initialize rewards.
for iter ← 1 to maxIter do

Assign instance q to an initial expert e randomly
if e fails to solve q then

topic ← getTopic(q)
expectedReward ← 0
bestExpert ← 0
for each expert e′ in the subnetwork of e do

if expRh(e′, topic)≥ expectedReward then

bestExpert ← e′

expectedReward ← expRh(e′, topic)
end

end

end

referredExpert ← bestExpert
if referredExpert solves q then

update(reward(e,topic,referredExpert),1)
else

update(reward(e,topic,referredExpert),0)
end

end

Algorithm 1: Distributed Referral Learning, Q = 2

Action selection using Interval Estimation Learning (IEL) first estimates for
each action a the upper confidence bound for the mean reward by

UI(a) = m(a) + t
(n(a)−1)
α
2

s(a)√
n(a)

(1)

where m(a) is the mean observed reward for a, s(a) is the sample standard
deviation of the reward, n(a) is the number of observed samples from a, and
t
(n(a)−1)
α
2

is is the critical value for the Student’s t-distribution (n(a)−1 degrees of
freedom, α

2 confidence level) (in our case, the action is the selection of a referred
expert among possible choices in the subnetwork). Next, IEL selects the action
with the highest upper confidence bound.

The intuition is that high mean selects for best performance, and high variance
selects for unexplored expert capability on topic, thus optimizing for amortized
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performance, as variance decreases over time, and best mean is selected reliably
among the top candidates. The parameter α weights exploration more when
small and exploitation more when large. A partial parameter sweep confirmed
that a value of α = 0.05, settled on in (3), also worked well in (7).

5.2 Distributed Referral Learning

Algorithm 1 outlines the steps for expertise estimation in a distributed setting with
single referral (a per-task query budget Q = 2). The function expRh(e′, topic)
estimates e′’s topical expertise using heuristic h. DIEL (Distributed Interval
Estimation Learning), and DMT (Distributed Mean-Tracking) differ in this
heuristic, DIEL estimating reward by equation (1) and DMT by using the
sample-mean.

One major challenge in the distributed setting is that there is no global
visibility of rewards, i.e., reward(ei, topicp, ej) is only visible to expert ei. When
the task is solved successfully, update assigns an additional reward of 1 to the
referred expert (experts keep track of success and failure of experts they refer to
by means of a sequence of 0s and 1s; here, we just mean that a “1” is appended
to this sequence in the case of success).

Proactive-DIEL differs from DIEL in the following three key ways.
1. Emphasis on exploitation: The Student’s t-distribution parameter has

a large value for smaller n’s and drops down towards 1 as n increases, thereby
boosting exploration in early on in the learning. This is less important in our
current setting where we start with a partially informative prior, hence we
dropped this parameter in equation (1), leading to

UI(a) = m(a) + s(a)√
n(a)

(2)

In fact, since we found that even the original DIEL performed better on
the original data in (7) with this revised formula, we used it for subsequent
performance comparisons in this paper.

2. Initialization: Rather than initializing DIEL sets reward(ei, tk, ej) for
each i, j and k with a pair (0, 1) in order to initialize mean and variance, as in
DIEL, proactive-DIEL initializes reward(ei, tk, ej) for each advertisement unit
⟨ei, ej , tk, µtk

⟩ with two rewards of µtk
.

To initialize topics for which no advertisement units are available (recall that
the budget was assumed to suffice for advertising an expert’s top two skills only)
we assumed it was safe and informative to initialize the rewards as if the expert’s
skill was the same as on her second best topic, that is, with two rewards of
µtsecondBest

, effectively being an upper bound on the actual value.
3. Reward update function:
When a referred expert ej succeeds in solving a task on topic tk, update in

proactive-DIEL’s update function, like DIEL’s, assigns an additional reward of 1
to reward(ei, tk, ej).
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When ej fails, however, instead of always appending a 0 to reward(ei, tk, ej),
proactive-DIEL, in the presence of an advertisement unit ⟨ei, ej , tk, µtk

⟩, appends
a (negative) penalty P with probability µtk

. This way, over-reporting of skill
leads to more frequent incurrence of the penalty.

In the absence of an advertisement unit, a penalty P is still appended, but
with a probability equal to the sample mean of ej observed by ei on topic tk. In
our experiments, we set P to -0.35.

6 Experimental Setup

Parameter Description Distribution
τ P (ReferralLink(vi, vj )) Uniform(0.01, 0.1)
c = τ + c Sim(ei, ej). Uniform(0.1,0.2)

µ1 Truncated mixture of two Uniform(0,b)
µ2 Gaussians for topics Uniform(b,1)

b ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
σ1 Uniform(0.2,0.4)
σ2 Uniform(0.05,0.15)
w2 N (0.03, 0.01), w2 ≥ 0

Table 1. Parameters for synthetic data set.

Since the performance of a referral network is sensitive to the topology of
the network and expertise of experts on individual topics, we evaluated the
performance of proactive-DIEL on the same wide range of scenarios considered
in (7) by varying the parameters in the network. Table 1 lists the distributions
from which the parameters are sampled. The data set consisted of 1000 scenarios,
each with 100 experts, 10 topics and a referral network.

Following (7), we also report upper-bound performance of a network where
every expert has access to an oracle that knows the true topic-mean (i.e.,
mean(Expertise(ei, q) : q ∈ topicp) ∀i, p) of every expert-topic pair. Our measure
of performance is the overall task accuracy of our multi-expert system.

7 Results

In this section we present our three main results: (1) Access to (noisy) priors on
their colleagues’ expertise improves an expert’s performance in both the DIEL
and DMT algorithms, (2) in the augmented setting, even partial and possibly
inaccurate information on the priors helps, and (3) misreporting skills confers
little or no advantage when the other experts report truthfully.

7.1 DIEL and DMT with informative prior

We first show that informative priors on the means can be easily incorporated
into DIEL and DMT and incorporating the priors is beneficial for both DIEL
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Figure 2. DIEL and DMT with informative prior.

and DMT. Suppose every expert has access to an oracle than can estimate
the true topic-mean of every other expert-topic pair within an error bound, i.e.
|µei,tk

− µ̂ei,tk
| ≤ δ. Unlike (7), instead of a 0 and a 1, all rewards reward(ei, tk, ej)

are initialized with two rewards of µ̂ei,tk
. In figure 2, we see that even when δ is

as high as 0.2, the performance of both DIEL and DMT substantially improved
with uninformed DIEL still outperforming informed DMT at the later stage
given enough samples.

7.2 Performance of proactive-DIEL
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Figure 3. Performance comparison of DIEL and proactive-DIEL.

Next, we analyze the performance of DIEL with proactive skill posting.
Figure 3 shows that even with a limited budget of 2 × |subnetwork| (i.e., two
advertisements per expert in the subnetwork), proactive-DIEL requires very few
samples to reach a reasonably high overall network performance.

Even when experts post their skills truthfully, their self-estimates may be
off. Here, we relax the accurate skill estimation assumption. Specifically, we
considered µ̂ = µ +N (0, σnoise), where µ̂ is an expert’s own estimate of her true
topic-mean µ, and σnoise is a small constant (we tried two different values for
σnoise, 0.05 and 0.1). Figure 4 compares the performance of proactive-DIEL with
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Figure 4. proactive-DIEL with noisy skill estimation.

noisy estimates with the initial noise-free version and DIEL. Figure 4(a) shows
that in the early stage, with a small amount of noise in estimation, eventually the
same performance as the noise-free version is achieved while remaining strictly
superior to DIEL throughout the entire course of simulation. With a larger
value of noise, Figure 4(b) shows that proactive-DIEL is slightly worse than the
noise-free version, but nonetheless, outperforms DIEL.

7.3 Bayesian-Nash Incentive-Compatibility

Our results show that proactive-DIEL is immune to a small amount of Gaussian
noise in estimating topical expertise. Another important but somewhat orthogonal
goal is to prevent deliberate misreporting, e.g. experts trying to get more business
by overstating their skills. We treat the number of referrals received as a proxy
for payment. Intuitively, proactive-DIEL’s design discourages misreporting in the
following two ways: For an advertised skill, if over-reported, a failed task would
receive a higher skill-estimation penalty that it would otherwise. When a skill is
under-reported, the expert will be selected less often, and hence it is naturally
self-balancing.

µtbest µtsecondBest Factor
Truthful Overbid 0.99
Overbid Truthful 1.00

Overbid Overbid 0.97
Truthful Underbid 1.04

Underbid Truthful 1.09

Underbid Underbid 1.22

Underbid Overbid 1.11

Overbid Underbid 1.04

Table 2. Empirical analysis on Bayesian-Nash incentive-compatibility. Strategies where
being truthful is no worse than being dishonest are highlighted in bold.

Our empirical evaluation shows that in the steady-state, proactive-DIEL
is fairly resilient to strategic lying, and is almost Bayesian-Nash incentive-
compatible, i.e., there is little or no advantage for an individual expert in
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misreporting topical expertise when all other experts in the network report
truthfully. We analyze the effect of misreporting the following way. First, we
considered different combinations an expert can use while reporting their best and
second-best skill (listed in Table 2). For a given strategy and scenario scenarioi,
we first fix one expert, say ei

l. Let truthfulReferrals(ei
l) denote the number of refer-

rals received by ei
l beyond a steady-state threshold (i.e., a referral gets counted if

the initial expert has referred 1000 or more instances to her subnetwork) when ei
l

and all other experts report truthfully. Similarly, let strategicReferrals(ei
l) denote

the number of referrals received by ei
l beyond a steady-state threshold when ei

l

misreports while everyone else advertises truthfully. We compute the following
factor:

1000∑
i=1

truthfulReferrals(ei
l)

1000∑
i=1

strategicReferrals(ei
l
)

i.e., the ratio of the total number of truthfulReferrals(ei
l)

to the total number of strategicReferrals(ei
l) across the entire data set. A value

greater than 1 implies truthful reporting fetched more referrals than strategic
lying. Table 2 shows that beyond the steady-state threshold, strategic misreport-
ing is hardly beneficial and in most of the cases honest reporting of skills fetched
more referrals.

8 Conclusion

In this work, we extended the referral-learning as proposed in (7) with a skill
posting or advertising step, and revised the DIEL algorithm to (1) take advantage
of informative priors and (2) include a mechanism to discourage cheating, such
as skill over-reporting to get additional “business” by individual experts in a
referral network

Our new algorithm, proactive-DIEL, outperformed its predecessor convinc-
ingly, while nearly reaching empirical Bayesian Nash incentive compatibility.

We intend to extend these results in the following ways in the future.
– Strategyproofness: While misreporting was shown to be of little or no

benefit when all other experts report truthfully, a stronger degree of incentive
compatibility, strategyproofness, would require this to be the case no matter
what other experts do. One future goal is to investigate what modifications
to proactive-DIEL, or which conditions would ensure this.

– Dynamic networks: Our results showed an improved performance through
informed priors in a static setting. Future research could compare the resilience
of proactive-DIEL and DIEL in a dynamic setting, for instance when new
experts join the network, or existing ones drop off.

– Expertise drift: In this work, we assumed expertise does not change with
time. But it is conceivable that experts, for instance, improve with practice.
Modifying proactive-DIEL to deal with time-varying expertise will be par-
ticularly challenging and may require designing an adaptive version of the
reward mechanism.
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