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Abstract Distributed learning in expert referral networks is a new Active

Learning paradigm where experts—humans or automated agents—solve

problems if they can or refer said problems to others with more appropriate

expertise. Recent work augmented the basic learning-to-refer method

with proactive skill posting, where experts may report their top skills

to their colleagues, and proposed a modified algorithm, proactive-DIEL

(Distributed Interval Estimation Learning), that takes advantage of such

one-time posting instead of using an uninformed prior. This work extends

the method in three main directions: 1) Proactive-DIEL is shown to

work on a referral network of automated agents, namely SAT solvers,

2) Proactive-DIEL’s reward mechanism is extended to another referral-

learning algorithm, ϵ-Greedy, with some appropriate modifications. 3)

The method is shown robust with respect to evolving networks where

experts join or drop off, requiring the learning method to recover referral

expertise. In all cases the proposed method exhibits superiority to the

state of the art.
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1 Introduction

Learning-to-refer in expert referral networks is a recently proposed active learning
setting where an expert can refer problem instances to appropriate colleagues if
she finds the task at hand difficult to solve [1]. Such a network draws inspiration
from the real world examples of expert networks among physicians or within
consultancy firms. The key problem is learning to direct the referrals based
on the subject matter of the problem and on estimated expertise of colleagues.
The state-of-the-art referral learning algorithm, DIEL (Distributed Interval
Estimation Learning), has been further improved in an augmented learning
setting where experts can advertise their top skills to colleagues upon joining
the network [2]. The modified algorithm, dubbed proactive-DIEL, demonstrated
superior performance even in the presence of noise in skill self-estimates and
showed empirical evidence of being near-Bayesian-Nash Incentive Compatible,
i.e., misreporting skills to receive more referrals provided little or no benefit.

Results presented in [2] were limited to synthetic data with well-behaved (e.g.
Gaussian) distributions. In this work, we use a suite of 100 real SAT solvers as
experts and SAT problem distributions as topics, and show that proactive-DIEL’s
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superiority over DIEL also holds when the problem distributions and the behavior
of the experts is not predictable in the aggregate, i.e., it is not following a known
parameterizable distribution. Then we show that the reward-penalty mechanism
and initialization proposed in proactive-DIEL translates well to another referral
algorithm with some suitable modifications: proactive-ϵ-Greedy obtained superior
performance than its corresponding non-proactive version. Finally, we relax a
major assumption stated in both [1, 2] by allowing dynamic addition and drop-off
of experts, and demonstrate proactive-DIEL’s strong resilience to such changes in
network nodes and topologies even when substantial (e.g. multiple 20% changes).

After discussing related work, we review the DIEL model, describe skill posting
and outline the distributed referral learning algorithms. Next, we describe our
experimental set-up, and present our results and observations. We end with some
general conclusions and some future research ideas.

2 Related Work

In terms of the learning setting and referral learning algorithm, our primary basis
for this work was [1] which first proposed a novel learning setting in a context of
Active Learning where experts are connected through a network and can refer
instances to one another. The proposed algorithm (DIEL) built upon research
on interval estimation learning, a reinforcement learning technique which strives
to strike a balance between exploration and exploitation, first proposed in [3, 4],
and successfully applied to estimate the accuracy of multiple labelers in [5].
The referral framework drew inspiration from earlier work in referral chaining,
first proposed in [6] and subsequently extended, for example, in[7–10]. In the
current work, we have adopted the setting, along with some of the algorithms
and assumptions for comparison.

This learning setting was further extended in [2], by allowing advertisement to
colleagues (partially available priors), and the original DIEL algorithm modified,
both for improved performance and to encourage incentive compatibility. There is
a large body of literature where truthful mechanism design is the principal focus
[11–14]. We have implemented and extended the same mechanism used in proactive-
DIEL in our present work, without however proving incentive compatibility
for our newly introduced algorithms, or taking any further steps to establish
strategyproofness [15].

Finally, we used SATenstein [16], a highly parameterized Stochastic Local
Search (SLS) SAT solver for experimental validation of proactive-DIEL on a real
task of SAT solving. With a rich design space of 2.01 × 1014 candidate solvers
drawing inspiration from most of the prominent SLS SAT solvers proposed in the
literature, high-performance SATenstein solvers for specific SAT distributions
can be obtained by using an automatic algorithm configurator. In our experiments,
we used 100 such solvers obtained from the experiments in [17].
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3 Referral Network

3.1 Preliminaries

Referral network: Represented by a graph (V, E) of size k in which each
vertex vi corresponds to an expert ei (1 ≤ k) and each bidirectional edge ⟨vi, vj⟩
indicates a referral link which implies ei and ej can refer problem instances to
each other.
Subnetwork: The subnetwork of an expert ei is the set of experts linked to ei

by a referral link.
Scenario: Set of m instances (q1, . . . , qm) belonging to n topics (t1, . . . , tn) that
are to be addressed by the k experts (e1, . . . , ek).
Expertise: Expertise of an expert/question pair ⟨ei, qj⟩ is the probability with
with ei can solve qj .
Referral mechanism: For a query budget Q = 2 (fixed across all our experi-
ments), consists of the following steps.
1. A user issues qj ( initial query ) to a randomly chosen expert ei (initial

expert)
2. Initial expert ei examines the instance and solves it if possible. This depends

on the expertise of ei wrt. qj .
3. If not, a referral query is issued by ei to a referred expert, ej , within her

subnetwork. Learning-to-refer involves improving the estimate of who is most
likely to solve the problem.

4. If the referred expert succeeds, she communicates the solution to the initial
expert, who in turn, communicates it to the user.

Advertising unit: a tuple ⟨ei, ej , tk, µtk
⟩, where ei is the target expert, ej is the

advertising expert, tk is the topic and µtk
is ej ’s (advertised) topical expertise.

Advertising budget: the number of advertising units available to an expert,
following [2], set to twice the size of that expert’s subnetwork. Effectively means
that each expert reports her top two skills to everyone in her subnetwork.
Advertising protocol: a one-time advertisement that happens right at the
beginning of the simulation or when an expert joins the network. The advertising
expert ej reports to each target expert ei in her subnetwork the two tuples
⟨ei, ej , tbest, µtbest

⟩ and ⟨ei, ej , tsecondBest, µtsecondBest
⟩, i.e., the top two topics in

terms of the advertising expert’s topic means.
Further details regarding the assumptions involving expertise, network pa-

rameters, proactive skill posting mechanism and simulation details can be found
in [1, 2].

3.2 Referral Algorithms

From the point of view of a single expert, the decision to refer a problem is
essentially an action selection problem where an action corresponds to picking
one of a possible set of connected experts. Here, we give a short description of
the action selection procedure of the referral algorithms we considered and cite
relevant literature for further details.
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DIEL: DIEL uses Interval Estimation Learning for action selection. The
action a is chosen for which the upper-confidence interval UI(a) is largest, where
UI(a) = m(a) + s(a)√

n

m(a) is the mean observed reward, s(a) is the standard deviation of the observed
rewards and n is the number of observations so far. The intuition behind DIEL

is to combine exploitation (via high mean) and exploration (via high variance)
as needed. Following the earlier work [1, 2], we initialize the mean reward,
standard deviation and number of observations for all actions to 0.5, 0.7071 and
2 respectively for a smooth start (this is equivalent to an initialization with the
two rewards of 0 and 1).

proactive-DIEL: proactive-DIEL differs from DIEL in two key ways [2]. First,
the mean reward and standard deviation of the rewards are initialized differently.
Standard deviation is initialized to 0 (to put more emphasis on the advertised
priors). In presence of an advertisement unit, ⟨ei, ej , tk, µtk

⟩, the mean reward
rewardmean(ei, tk, ek) is initialized to µtk

. In absence of such advertisement unit,
(recall that the budget was assumed to suffice for advertising an expert’s top
two skills only) proactive-DIEL initializes the rewards as if the expert’s skill
was the same as on her second best topic, that is, with µtsecondBest

, effectively
being an upper bound on the actual value. Second, in addition to binary rewards
indicating success and failure, a failed task receives a probabilistic penalty to
discourage willful misreporting.

ϵ-Greedy: Unlike DIEL, ϵ-Greedy’s action selection choice is guided purely
by the mean reward (it greedily picks the highest one) [18]. As a diversification
step, with a small probability ϵ, a random action (in this case, selecting a
connected expert at random) is chosen. There are several ways to choose an
effective value for ϵ. In this work, we set ϵ to α∗K

N (where K is the subnetwork size
and N is the number of total observations). The value of the hyper-parameter α
is set by a parameter sweep on a training set created with the same distributional
parameters as the test set (for parameter description, see [1]).

4 Experimental Setup

The data set presented in [1] consisted of 1000 scenarios, each with 100 experts,
10 topics and a referral network. We use a random subset of 200 such scenarios
in all our experiments. Our performance measure is the overall task accuracy of
our multi-expert system.

The 100 SATenstein solvers we used are obtained by configuring SATenstein2.0

version (described in [17]) on six well-known SAT distributions. Each of these
solvers is configured on one of the six SAT distributions. We used the test sets
of the SAT distributions as our pool of tasks. Detailed descriptions of the SAT
distributions can be found in [16]. We carried out our experiments involving SAT
solvers on a cluster of dual-core 2.4 GHz machines with 3 MB cache and 32 GB
RAM running Linux 2.6.



Proactive-DIEL in Evolving Referral Networks 5

5 Results

Before delving into the details, we first give a short description of our key

findings:
– On an application where SAT solvers are experts, SAT distributions are

topics and the task is to solve a SAT instance, our results show that here too
proactive-DIEL beats DIEL in the early phase of learning.

– Proactive-ϵ-Greedy, the distributed referral learning version of ϵ-Greedy we
proposed that uses proactive skill posting, beat the original version under
the condition of truthful reporting of skills.

– While DIEL was well able to cope with small changes to the network,
proactive-DIEL proved substantially more robust in the face of large and
repeated changes, while consistently maintaining higher performance.

5.1 SATenstein SLS solvers as experts

All performance comparisons between DIEL and proactive-DIEL so far, have
been on synthetic data [2]. We were curious to evaluate how that translates
to a real task where, for instance, the noise on self-estimates does not follow a
known parameterizable distribution. For this, we constructed a referral network
of SAT solvers. Besides the importance of SAT solvers in industry and academia,
what made this domain an attractive choice for us was our access to a large
number of solvers with varying expertise on six well-known SAT distributions
via SATenstein [16], and the fact that solutions can be verified trivially.

For our experiments, the budget C for solving each instance is set to 1 CPU
second. A solver earns a reward of 1 if it finds a satisfying solution within C
seconds, and 0 otherwise (on top of this, proactive-DIEL computes additional
penalties depending on advertised skills). Expertise estimates for the SAT solvers
are computed based on the number of correct solutions on a set of background
data on the SAT distributions under consideration. Figure 1(a) gives an inkling
how expertise levels between solvers may differ on two tasks. Figure 1(b) presents
a comparison of the performance of proactive-DIEL with that of DIEL when
applied to a referral network of SAT solvers (we considered 10 different referral
networks randomly selected from our data set), with skill postings determined
by these expertise self-estimates. We see that, while the eventual performance
levels are very similar, proactive-DIEL ramps up significantly faster than its
predecessor, in spite of the noise and uncertainty on the expertise self-estimates.

5.2 Proactive-ϵ-Greedy

We extended the ϵ-Greedy algorithm with the reward-penalty mechanism used
in proactive-DIEL in a straightforward way, with the exception that we do not
impose a penalty during a diversification step even when the referred expert fails.
Figure 2 shows that, with a similar initialization, the new algorithm (proactive-
ϵ-Greedy) performs substantially better than the old. Figure 2(b) shows that this
performance improvement holds even in the presence of noise in the self-estimates.



6 Ashiqur R. KhudaBukhsh, Jaime G. Carbonell, and Peter J. Jansen

Solvers
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
s
ti
m

a
te

d
 E

x
p
e
rt

is
e

HGEN

CBMC

(a) Skill estimates

0 200 400 600 800 1000 1200 1400 1600 1800 2000

#Referrals per subnetwork

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

P
e
rc

e
n
ta

g
e
 o

f 
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

proactive-DIEL

DIEL

(b) Performance comparison

Figure 1. Expertise estimates of a subset of solvers on background data of two SAT

distributions and performance comparison with SATenstein solvers as experts.
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Figure 2. Performance comparison of proactive-ϵ-Greedy and ϵ-Greedy.

Following [2], we considered µ̂ = µ + N (0, σnoise), where µ̂ is an expert’s own
estimate of her true topic-mean µ, and σnoise is a small constant.

5.3 Evolving networks

In practice, networks are not static – new experts join in and old experts leave
– and robustness to such network changes is crucial for a referral algorithm’s
performance on real-world data. In these results, we explore a steady rate of
network changes occurring at regular intervals (every 50 iterations, an iteration
being 1000 initial queries). It is clear from Figure 3 that proactive-DIEL is much
more resilient to these network changes than DIEL (smaller dip, faster recovery).
The acid test for proactive-DIEL is shown in Figure 3(b), where its recovery in
the face of a repeated 20% network change, with noisy self-estimates, led to only
minimal degradation 1 .

6 Concluding Remarks

In this work, we extended the referral-learning method proposed in [2] in three
directions. First, we obtained experimental validation of proactive-DIEL’s su-

1 Note that the choice to use 50-iteration bursts is purely for visualization reasons and

our results do not change qualitatively when we consider similar changes distributed

across the entire course of the simulation. We also ran experiments with a large

one-time network change from which both DIEL and proactive-DIEL recovered well.
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Figure 3. proactive-DIEL on dynamic networks.

perior performance over DIEL in learning to refer among actual agents (SAT
solvers) without distributional assumptions. Next, we extended the initialization
and reward-penalty technique proposed in proactive-DIEL to other methods
and show an improved performance resilient to noisy self-estimates. Finally, we
showed proactive-DIEL’s robustness to evolving networks under severe network
changes, an excellent property of proactive-DIEL hereto unexplored.

Possible future extensions to our work include:
– Strategyproofness: While willful skill misreporting was shown to be of

little or no benefit when all other experts report truthfully in proactive-
DIEL [2], we are yet to empirically evaluate the same for ϵ-Greedy. Also, a
stronger degree of incentive compatibility, strategyproofness, would require
truthfulness for optimal performance in all cases.

– Expertise drift: Whereas we explored experts joining and dropping off the
referral network, the expertise of individual experts did not change with
time. But in practice expertise may improve with practice or degrade due
to fatigue or other factors. Devising algorithms to deal with time-varying
expertise would be a meaningful research challenge.

– Continuous rewards: With the experiments with SAT solvers, it is very
easy to conceive continuous rewards. If we treat (cutoff - run time) as reward,
we would get 0 reward on a failure and higher rewards will imply faster
solutions. Exploring reward mechanisms to handle continuous rewards could
further improve network performance as an effective referral will maximize
not only solution likelihood but also solution quality.
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