
Incentive Compatible Proactive Skill Posting in

Referral Networks

Ashiqur R. KhudaBukhsh1, Jaime G. Carbonell1, and Peter J. Jansen1

Carnegie Mellon University
{akhudabu, jgc, pjj}@cs.cmu.edu

Abstract Learning to refer in a network of experts (agents) consists of
distributed estimation of other experts’ topic-conditioned skills so as to
refer problem instances too difficult for the referring agent to solve. This
paper focuses on the cold-start case, where experts post a subset of their
top skills to connected agents, and as the results show, improve overall
network performance and, in particular, early-learning-phase behavior.
The method surpasses state-of-the-art, i.e., proactive-DIEL, by proposing
a new mechanism to penalize experts who misreport their skills, and
extends the technique to other distributed learning algorithms: proactive-ϵ-
Greedy, and proactive-Q-Learning. Our proposed new technique exhibits
stronger discouragement of strategic lying, both in the limit and finite-
horizon empirical analysis. The method is shown robust to noisy self-skill
estimates and in evolving networks.
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1 Introduction

Learning-to-refer in expert referral networks is a recently proposed active learning
setting where an expert can refer problem instances to appropriate colleagues if
she finds the task at hand difficult to solve [1]. Such a network draws inspiration
from the real world examples of expert networks, such as among physicians or
within consultancy firms. Initially designed for uninformative priors, an extension
of the learning setting is proposed in [2] where experts are allowed a one-time
local-network advertisement of a subset of their skills to their colleagues. The
success in the extended learning setting depends on a truthful mechanism to elicit
the true skills of the experts in the network. The experts, as selfish agents, try to
maximise the number of tasks they receive to maximize fees. In this paper, we
propose a novel penalty mechanism (applied to a diverse set of action selection
algorithms) that shows stronger discouragement to strategic lying, including
incentive compatibility for some referral algorithms, and also obtains a modest
performance improvement.

While we study and contrast the behavior in the limit of our proposed
mechanism against past work (see, Section 3.3), and show that theoretically, our
mechanism discourages willful misreporting better than previous work, many
of our experimental results deal with finite-horizon behavior (see, Section 5.2),
acknowledging that in a practical setting, we cannot afford an unbounded number
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of samples to identify truthful, skilled workers. Although our primary focus is
on referral networks, the challenge that we are addressing is relevant to the
multi-armed bandit problem with partially-available noisy priors, a fairly general
problem that may arise in several applications. We also see our work as a part of
the growing trend of several lines of research on adversarial Machine Learning [3].

A key aspect on which we differ from past works on multi-armed bandits [4–
7] is our choice of data sets: in addition to constructing traditional synthetic
data that obeys well-known distributions, we evaluate algorithms on a referral
network of high-performance SAT (propositional satisfiability problem) solvers
where neither expertise nor noise in estimating skill obey known parameterized
distributions.

2 Related Work

proactive- proactive- proactive- proactive- proactive-

DIEL [2] DIELt ϵGreedy [8] ϵGreedyt Q-Learningt

Incentive Compatibility ✓ [2] ✓✓ ✓ ✓✓ ✓✓
Tolerance to noisy skill-estimates ✓ [2] ✓ ✓ ✓ ✓✓
Early performance gain ✓ [2] ✓✓ ✓ ✓✓ ✓✓
Steady-state performance gain ✓ [2] ✓✓ ✓ ✓✓ ✓✓
Robustness to evolving networks ✓ [8] ✓✓ ✓ ✓✓ ✓✓

Table 1. Summary of contributions: Blue columns represent new algorithms first
proposed in this paper. Blue cells indicate new experimental results (e.g., cell (3,1),
(3,5)), a check mark indicates that a property holds, and two check marks indicate
we improve the known state of the art (including the case where there were no known
previous baselines to compare against).

Our starting point for this work was the augmented setting of referral learn-
ing [1, 9] first proposed in [2] and then extended in [8]. [2] proposed several
modifications to Distributed Interval Estimation Learning (DIEL), up to then
the best referral learning algorithm on uninformative priors. The modified algo-
rithm, proactive-DIEL, demonstrated superior performance, especially during the
initial learning phase, even in the presence of noise in skill self-estimates. It also
showed empirical evidence of being near-Bayesian-Nash Incentive Compatible,
i.e., misreporting skills to receive more referrals provided little or no benefit when
all other experts report truthfully. More recently, [8] showed that the mechanism
proposed in proactive-DIEL can be adapted with minor modifications to another
algorithm (ϵ-Greedy), and that the new algorithm is robust to noisy self-skill
estimates. Compared to the experiments reported in [8], we achieve stronger
incentive compatibility covering a wider range of referral algorithms while showing
comparable or better resilience to noise and dynamic network changes.

In our work, the baseline algorithms are the non-proactive referral algorithms,
of which DIEL is the known state of the art in the non-proactive setting. DIEL, a
reinforcement learning technique balancing the exploration-exploitation trade-off,
traces back to a chain of research on interval estimation learning, first proposed
in [10, 11] and has been successfully used in jointly learning the accuracy of
labeling sources and obtaining the most informative labels in [12]. Adversarial
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Machine Learning focuses on a wide variety of issues, ranging from adversarial
attempts to alter or influence the training data [13] to intrusion attacks by crafting
negatives that would pass a classifier (false negatives) [14]. A comprehensive
survey is available in [3]. In our work, deliberate skill misreporting from an expert
would not only make it difficult for connected experts to learn appropriate referral
choices, but it may potentially enable a weaker expert receive more business at the
expense of a stronger expert and thus reducing the overall network performance.

While we note that there exists a large body of literature on truthful mecha-
nism design [7, 15–17], a few key differences set us apart from budgeted multi-armed
bandit mechanism motivated by crowdsourcing platforms presented in [16]. Our
setting is distributed; hence it consists of many parallel multi-armed bandit prob-
lems. Also, experts have varying topical expertise, which increases the scale of
the problem as each expert needs to estimate the expertise of her colleagues for
each of the topics. In contrast, [16] considered only homogenous tasks. Reflecting
real-world scenarios where experts have differential expertise across topics, and
communication/advertisement is focused on the top skills, proactive-DIEL deals
with partially available priors, i.e., experts are restricted to bidding for business
in their top skill areas only, (a factor [16] did not need to consider because of
homogeneous tasks). Unlike budget-limited MAB [16, 18, 19], the budget restric-
tion in our case is on the advertisement; although we focus on a finite-horizon
performance analysis, there is no restriction on exploration or exploitation as
such. Finally, we present proof sketches for incentive compatibility in the limit, as
well as empirical performance evaluation on both synthetic data and real-world
data without distributional assumptions.

3 Referral Network

3.1 Preliminaries

We summarize our basic notation, definitions, and assumptions, mostly from
[1, 2], where further details regarding expertise, network parameters, proactive
skill posting mechanism and simulation details can be found.
Referral network: Represented by a graph (V, E) of size k in which each
vertex vi corresponds to an expert ei (1 ≤ k) and each bidirectional edge ⟨vi, vj⟩
indicates a referral link which implies ei and ej can co-refer problem instances.
Subnetwork of an expert ei: The set of experts linked to an expert ei by a
referral link.
Scenario: Set of m instances (q1, . . . , qm) belonging to n topics (t1, . . . , tn)
addressed by the k experts (e1, . . . , ek).
Expertise: Expertise of an expert/question pair ⟨ei, qj⟩ is the probability with
which ei can solve qj .
Referral mechanism: For a query budget Q (following [1, 2], we kept fixed to
Q = 2 across all our current experiments), this consists of the following steps.

1. A user issues an initial query qj to a randomly chosen initial expert ei.
2. The initial expert ei examines the instance and solves it if possible. This

depends on the expertise of ei wrt. qj .
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3. If not, a referral query is issued by ei to a referred expert ej within her
subnetwork, with a query budget of Q−1. Learning-to-refer involves improving
the estimate of who is most likely to solve the problem.

4. If the referred expert succeeds, she sends the solution to the initial expert,
who sends it to the user.

Advertising unit: a tuple ⟨ei, ej , tk, µtk
⟩, where ei is the target expert, ej is the

advertising expert, tk is the topic and µtk
is ej ’s (advertised) topical expertise.

Advertising budget: the number of advertising units available to an expert,
following [2], set to twice the size of that expert’s subnetwork; each expert reports
her top two skills to her subnetwork.
Advertising protocol: a one-time advertisement that happens at the begin-
ning of the simulation or when an expert joins the network. The advertising
expert ej reports to each target expert ei in her subnetwork the two tuples
⟨ei, ej , tbest, µtbest

⟩ and ⟨ei, ej , tsecondBest, µtsecondBest
⟩, i.e., the top two topics in

terms of the advertising expert’s topic means.
Explicit bid: A topic advertised in the above protocol.
Implicit bid: A topic that is not advertised, for which an upper skill bound <
expert’s two top advertised skills.

3.2 Referral Algorithms

From an individual expert’s point of view, the referral decision is an action
selection problem. We give a short description of action selection for the non-
proactive referral algorithms, and then extend to proactive skill positing.
DIEL: DIEL uses Interval Estimation Learning to select action a for which the
upper-confidence interval UI(a) is largest, where
UI(a) = m(a) + s(a)√

n

m(a) is the mean observed reward, s(a) is the standard deviation of the observed
rewards and n is the number of observations so far. The intuition behind DIEL
is to combine exploitation (via high mean) and exploration (via high variance).
As in [1, 2], we initialized the mean reward, standard deviation and number of
observations for all actions to 0.5, 0.7071 and 2 respectively as a non-informative
prior.
ϵ-Greedy: Unlike DIEL, ϵ-Greedy only considers the mean observed reward to
determine the most promising action [4]. It explores via an explicit probabilistic
diversification step – randomly selecting a connected expert for referral. We set ϵ
as in in [8]: Letting ϵ = α∗K

N (where K is the subnetwork size and N is the total
observations) we configured α by a parameter sweep on a training set as in [1].
Q-Learning: Q-Learning [20] is a model-free reinforcement learning technique
used to learn an optimal action selection policy provided that all actions are
sampled repeatedly in all states. To ensure this, we combined Q-Learning with
ϵ-Greedy as an action-selection component. For all of the above algorithms, a
successful task receives a reward of 1 and a failed task receives a reward of 0.
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3.3 Proactive Referral Algorithms

We extend the non-proactive referral algorithms to the augmented setting with
proactive skill posting, both in previous work [2, 8] and the current work.
proactive-DIEL: In [2], proactive-DIEL was derived from DIEL by enabling
each expert to post a self-estimated skill prior initializing the mean expected
reward. Given advertisement unit ⟨ei, ej , tk, µtk

⟩ the rewardmean(ei, tk, ek) (mean
reward received by expert ek on topic tk as observed by expert ei) is initialized
to µtk

(explicit bid). When not, proactive-DIEL initializes rewardmean(ei, tk, ek)
to µtsecondBest

, which is in effect an upper bound.
Since each expert has an incentive to maximize its income by drawing new

business, a probabilistic penalty mechanism was added to discourage misreporting.
The probability penaltyProbability with which a penalty (kept to 0.35 in [2]) is
applied, is computed as described in algorithm 1 below.

if referredExpert succeeds then

penaltyProbability ← 0
else

if topic t is explicitBid then

penaltyProbability ← µadvertised

else

penaltyProbability ← µ̂observed

end

end

Algorithm 1: Penalty mechanism

proactive-ϵ-Greedy: proactive-ϵ-Greedy was adapted essentially the same way
as proactive-DIEL, the only minor difference being that a failed task does
not receive a penalty if it was a diversification step. Since one of our primary
contributions is a better mechanism to prevent strategic misreporting, we describe
this in the context of proactive-Q-Learningt, an algorithm also first proposed
here.
proactive-Q-Learningt uses the same initialization and a similar technique
to bound unknown priors with reported second-best skills as proactive-DIEL
and proactive-ϵ-Greedy. The Q-function for each action is initialized with its
advertised mean or corresponding µtsecondBest

in absence of such advertisement
unit.

However, we take a marked deviation in defining the penalty function, which
incorporates a factor we may call distrust, as it estimates a likelihood the expert
is lying, given our current observations:
penalty = C2distrust, where
distrust = distrustFactor1 + distrustFactor2;
distrustFactor1 = |µtbest

− µ̂tbest
|ζ(ntbest

) and,
distrustFactor2 = |µtseconBest

− µ̂tsecondBest
|ζ(ntsecondBest

)
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where ζ(nt) = nt

nt+C1
, a factor ramping up to 1 in the steady state, where nt is

the number of observations for topic t.
Basically, distrustFactor1 and distrustFactor2 estimate how much the adver-

tised skill is off from its estimated mean, for the best skill and second-best skill
respectively. C1 and C2 are the two configurable parameters of this mechanism;
the larger the value, greater is the discouragement for strategic lying. In all our
experiments, C1 was set to 50. C2 was set to 1, 2 and 3 for proactive-DIELt,
proactive-ϵ-Greedyt, and proactive-Q-Learningt, respectively.

The newly proposed penalty mechanism differs from the old method in that
all tasks receive a penalty regardless of whether the referred expert solves it or
not. Second, the two mechanisms penalize the extent of misreporting in different
ways, as the previous method fails to penalize underbidding. We can show a
simple two-expert subnetwork to illustrate how underbidding could be used to
attract more business in the earlier scheme. Consider two experts, e1 and e2, have
identical expertise (1 - ϵ, ϵ ≤ 0.5) across all tasks. e1 reports truthfully while e1
underbids and advertises (1 - 2ϵ). For a penalty of r (r > 0), the expected mean
reward for e1 will be (1 - ϵ) - ϵ (1 - ϵ) r. Due to underbidding, e2 will have an
unfair advantage over e1 as her expected mean reward will be (1 - ϵ) - ϵ (1 - 2ϵ)
r, larger than e1.
proactive-DIELt and proactive-ϵ-Greedyt: proactive-DIELt and proactive-
ϵ-Greedyt denote the corresponding proactive versions with the new penalty
mechanism.

We provide proof sketches demonstrating Bayesian-Nash incentive compati-
bility in the limit for our new mechanism.

Theorem 1. Under the assumption that all actions are visited infinitely often,
in the limit, strategic lying is not beneficial in proactive-Q-Learningt.

Proof. We give a proof sketch by showing that a lying expert will have a non-zero
penalty in the limit.

lim
n→∞

µ̂tbest
= µtbest

(1)

lim
n→∞

µ̂tsecondBest
= µtsecondBest

(2)

lim
n→∞

ζ(n) = 1 (3)

Hence, for a truthful expert both distrust and penalty approach zero in the
limit. However, for a lying expert at least one of the estimates (distrustFactor1 or
distrustFactor2) is off by a positive constant c. Hence, in the limit, distrust ≥ c
and penalty ≥ C2c, therefore a truthful expert will always receive more reward
than if she lies and since Q-Learning considers a discounted sum of rewards,
eventually, a truthful expert will have a larger Q-value than if she lies. Ergo,
strategic lying is not beneficial when all other experts are truthful.

Theorem 2. Under the assumption that all actions are visited infinitely often,
in the limit, strategic lying is not beneficial in proactive-ϵ-Greedyt.
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Proof. The proof is essentially the same as the previous proof.

Theorem 3. Under the assumption that all actions are visited infinitely often,
in the limit, strategic lying is not beneficial in proactive-DIELt.

Proof. In our previous proof, we already showed that in the limit, a lying expert
will always receive a higher penalty than a truthful expert which will effectively
lower the reward mean.

For any reward sequence r1, r2, . . . , rn, and a penalty sequence p1, p2, . . . , pn,
−max(p1, p2, . . . , pn) ≤ ri ≤ 1 − min(p1, p2, . . . , pn),
1 ≤ i ≤ n.
Now, distrust ≤ 2. Hence, 0 ≤ pi ≤ 2C2, 1 ≤ i ≤ n.
Hence, −2C2 ≤ ri ≤ 1, i.e., all rewards are finite and bounded. This means, in
the limit, the variance of the reward sequence is finite and bounded. Hence,

lim
n→∞

UI(a) = lim
n→∞

(m(a) + s(a)√
n

) = m(a) (4)

This means, in the limit, the reward for DIEL will be dominated by its mean
reward. Since a lying expert will always incur higher penalty than a truthful
expert, an expert will have a higher reward mean when it behaves truthfully.

Unlike the Q-learning variants and ϵ-Greedy algorithms, there is no guarantee
for DIEL that all actions are visited infinitely often, although a variant can
guarantee that condition with random visits at ϵ probability, and perform similarly
in the finite case for small enough ϵ.

4 Experimental Setup

Data set: as our synthetic data set, we used the same 1000 scenarios used
in [1, 2]. Each scenario consists of 100 experts connected through a referral
network and 10 topics. For our experiments involving SAT solvers, we used 100
SATenstein (version 2.0) solvers obtained from the experiments presented in [21]
as experts. As topics we use the six SAT distributions on which SATenstein is
configured. The details of the SAT distributions can be found in [21].
Algorithm configuration: The version of DIEL we used is parameter free. The
remaining parameterized algorithms are configured by selecting 100 random
instantiations of each algorithm and running them on a small background data
set (generated with the same distributional parameters as our evaluation set). We
selected the parameter configuration with the best performance on the background
data.
Performance measure: following [1, 2], we used overall task accuracy as our
performance measure. In order to empirically evaluate Bayesian-Nash incen-
tive compatibility, we followed the same experimental protocol followed in [2]
(described in Section 5.2).
Computational environment: experiments on synthetic data were carried out
on Matlab R2016 running Windows 10. Experiments on SAT solver referral
networks were carried out on a cluster of dual-core 2.4 GHz machines with 3 MB
cache and 32 GB RAM running Linux 2.6.
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5 Results

5.1 Overall Performance Gain
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Figure 1. Performance comparison with previous proactive algorithms and correspond-
ing non-proactive versions.

Figure 1 compares the performance of the proactive algorithms with their
non-proactive versions under the assumption of truthful reporting and accurate
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self-skill estimates. We also compare against the older proactive algorithms of
which proactive-DIEL can be considered state of the art. The two main aspects of
note are performance in the early learning phase, and steady state performance.
We first observe that, as expected, all new proactive algorithms did better than
their non-proactive counterparts, both in steady state and during the early phase
of learning, while noting that the gap between DIEL and its proactive versions
was less than the corresponding difference for the other two algorithms. We
also obtained a modest performance gain over the state of the art and both
proactive-DIELt and proactive-ϵ-Greedyt did slightly better than the earlier
proactive referral algorithms.

5.2 Incentive Compatibility

µtbest µtsecondBest proactive proactive proactive proactive proactive
DIEL DIELt ϵGreedy ϵGreedyt Q-Learningt

Truthful Overbid 0.99 1.02 0.99 1.03 0.97
Overbid Truthful 1.00 1.19 0.98 1.24 1.35

Overbid Overbid 0.97 1.25 0.98 1.36 1.39

Truthful Underbid 1.04 1.15 1.00 1.08 1.21

Underbid Truthful 1.09 1.16 1.06 1.10 1.17

Underbid Underbid 1.22 1.32 1.12 1.24 1.56

Underbid Overbid 1.11 1.15 1.09 1.09 1.14

Overbid Underbid 1.04 1.50 1.04 1.34 1.63

Table 2. Comparative study on empirical evaluation of Bayesian-Nash incentive-
compatibility. Strategies where being truthful is no worse than being dishonest are
highlighted in bold.

Next, we focus on the case of deliberate (strategic) misreporting, i.e. experts
trying to get more business by overstating (or counter-intuitively, understating)
their skills. While our theoretical results (see, Section 3.3) indicate proactivet

algorithms are incentive compatible in the limit, empirical evaluation on a finite
horizon addresses practical benefits.

Following [2], we treat the number of referrals received as a proxy for expert
benefit, and we empirically analyze Bayesian-Nash incentive compatibility by
examining all specific strategy combination (e.g., truthfully report best-skill but
overbid second-best skill) that could fetch more referrals (listed in Table 2).
For a given strategy s and scenario scenarioi, we first fix one expert, say ei

l.
Let truthfulReferrals(ei

l) denote the number of referrals received by ei
l beyond a

steady-state threshold (i.e., a referral gets counted if the initial expert has referred
1000 or more instances to her subnetwork) when ei

l and all other experts report
truthfully. Similarly, let strategicReferrals(ei

l) denote the number of referrals
received by ei

l beyond a steady-state threshold when ei
l misreports while everyone

else advertises truthfully. We then compute the following Incentive Compatibility
factor (ICFactor) as :
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ICFactor =

1000∑
i=1

truthfulReferrals(ei
l)

1000∑
i=1

strategicReferrals(ei
l
)

.

A value greater than 1 implies truthfulness in expectation, i.e., truthful reporting
fetched more referrals than strategic lying.

Table 2 presents the ICFactors for each algorithm and each strategy combi-
nation. We see that, beyond the steady-state threshold, strategic misreporting is
hardly beneficial and in fact counterproductive in most cases. Proactive-DIELt

was (slightly but consistently) better at discouraging each strategy combination
than proactive-DIEL. The only case truthful advertising fetched slightly fewer
referrals for proactive-Q-Learningt is when an expert truthfully reports her top
skill but overbids her second-best skill (in fact a hard case for all the algorithms).
This is likely the result of the way the posted second-best skill is used to bound
implicit bids. However, on doubling the horizon (i.e., considering 10,000 samples
per subnetwork), we found that proactive-Q-Learningt’s ICFactor improved to
1.04.

5.3 Robustness To Noisy Skill Estimates, Evolving Networks

So far, we have shown that our proposed proactive referral algorithms address
the cold start problem better than their non-proactive counterparts and provide
stronger discouragement to strategic lying. However, even when experts post their
skills truthfully, their self-estimates may not be precise. Imprecise skill estimation
in proactive skill posting was first explored in [2, 8]. Note that, since a noisy bid
can be interpreted as deliberate misreporting and vice-versa, robustness to noisy
self-skill estimates and robustness to strategic lying are two major goals and
there lies an inherent trade-off between them. Following [2], we assume Gaussian
noise on the estimates in the form of µ̂ = µ + N (0, σnoise), where µ̂ is an expert’s
own estimate of her true topic-mean µ, and σnoise is a small constant (0.05 or
0.1 in our experiments).

Figure 2 compares the performance of the proactive referral algorithms
with noisy estimates with the noise-free case and their non-proactive versions.
Resilience to the noise depends on the algorithm. In proactive-DIELt, a small
amount of noise (0.05) degrades the steady-state performance, but retains a
small advantage over the non-proactive version. While both versions of noisy
proactive-DIELt do substantially better in the early-learning phase, there is no
steady-state performance gain in the presence of larger noise. Proactive-ϵ-Greedyt

was the most resilient (not shown in the figure): even with a larger noise value, it
kept a significant lead over the non-proactive version even in the steady state
(task accuracy: 77.33% (σnoise = 0.1), 76.76% (σnoise = 0.05), and 75.26% for
the non-proactive version). Proactive-Q-Learningt was the most sensitive: with
smaller noise value, the early-learning-phase gain disappears again in the steady
state; with higher noise value, proactive skill posting became counter-productive.

Referal networks may be dynamic, with new experts joining in and old experts
leaving. We have already seen that a primary benefit of proactive methods is that
they address the cold-start problem. Rapid improvement in the early learning



Incentive Compatible Proactive Skill Posting in Referral Networks 11

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

#Samples per subnetwork

55

60

65

70

75

80

T
a
s
k
 A

c
c
u
ra

c
y

proactive-DIEL
t
, σ

noise
 = 0.05

proactive-DIEL
t
, σ

noise
 = 0.1

DIEL

(a) Noise tolerance of proactive-DIELt.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

#Samples per subnetwork

50

55

60

65

70

75

80

T
a
s
k
 A

c
c
u
ra

c
y

proactive-Q-Learning
t
, σ

noise
 = 0.05

proactive-Q-Learning
t
, σ

noise
 = 0.1

Q-Learning

(b) Noise tolerance of proactive-Q-Learningt.

0 50 100 150 200 250 300 350 400 450 500

#Samples per subnetowrk

55

60

65

70

75

80

T
a
s
k
 A

c
c
u
ra

c
y

proactive-DIEL
t

proactive-DIEL

DIEL

(c) Resilience to evolving networks.

Figure 2. Robustness to noisy skill estimates, evolving networks.

phase is perhaps even more important for evolving networks. Figure 2(c) presents
an extreme case of 20% network change at regular interval. We found that the
proactive algorithms handled the network changes much better than the original
DIEL, with proactive-DIELt marginally outperforming proactive-DIEL.
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(a) Performance comparison between DIEL and
proactive-DIELt.
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Figure 3. Performance comparison on SAT solver referral network.

5.4 SAT Solver Referral Network

As in [8], we also ran several experiments on a referral network of high-performance
Stochastic Local Search (SLS) solvers, a more realistic situation in which expertise



or noise in self-skill estimates do not obey known parameterized distributions.
Our experts are 100 SATenstein solvers with varying expertise on six SAT
distributions (map to topics). We ran experiments on 10 randomly chosen referral
networks from our synthetic data set. In order to save computational cycles, in
these experiments, we only focus on the referral behavior. This explains why our
choice of horizon is smaller (also, the number of topics is less than the synthetic
data set). On a given SAT instance, the referred SATenstein solver is run with
a cutoff time of 1 CPU second. A solved instance (a satisfying model is found)
fetches a reward of 1, a failed instance (timeout) fetches a reward of 0.

Figure 3 compares the performance of proactive and non-proactive algorithms
on this data set. Figure 3(a) shows that proactive-DIELt retains the early-learning
phase advantage over DIEL, but the slight performance gain in steady state is
missing. On the other hand, Figure 3(b) shows qualitatively similar behavior
as the synthetic data set: throughout the learning phase, proactive-ϵ-Greedyt

maintained a modest lead over its non-proactive version.

6 Conclusions

We proposed an incentive compatible mechanism improving the state of the art
for referral learning, both in overall performance and in discouraging strategic
lying. We extended the algorithms (DIEL, ϵ-Greedy) as well as proposed a new
one (Q-Learning) to use the new mechanism, and compared their behavior both
with and without noise on the self-skill estimates, indicating ϵ-Greedy to be the
most and Q-Learning the least robust. Similar experiments on automated agents
(SAT solvers) confirmed the results on synthetic data.
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