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Abstract

A group of agents are said to collude if they share infor-
mation or make joint decisions in a manner contrary to
explicit or implicit social rules that results in an unfair
advantage over non-colluding agents or other interested
parties. For instance, collusion manifests as sharing an-
swers in exams, as colluding bidders in auctions, or as
colluding participants (e.g., Turkers) in crowd sourc-
ing. This paper studies the latter, where the goal of the
colluding participants is to “earn” money without do-
ing the actual work, for instance by copying product
ratings of another colluding participant, adding limited
noise as attempted obfuscation. Such collusion not only
yields fewer independent ratings, but may also intro-
duce strong biases in aggregate results if undetected.
Our proposed unsupervised collusion detection algo-
rithm identifies colluding groups in crowd sourcing with
fairly high accuracy both in synthetic and real data, and
results in significant bias reduction, such as minimizing
shifts from the true mean in rating tasks and recovering
the true variance among raters.

1 Introduction
Over the last decade, crowdsourcing systems have emerged
as a significant resource for sharing knowledge, accomplish-
ing tedious tasks, collecting opinions, and gathering infor-
mation. Several widely-used online systems have facilitated
access to a varied range of people for collecting opinions in
a short amount of time. Amazon’s Mechanical Turk (AMT)
is one such system that has gained tremendous popularity.
However, crowdsourcing for opinions is often vulnerable to
certain threats such as collusion among participants, either
to intentionally bias a rating, or simply to avoid work where
a set of colluding individuals designate one to do the ac-
tual work, the others merely copy, and all are paid, negating
much of the benefit to whoever posts and pays for the tasks.
Worse yet, copying may skew the statistics in crowd ratings,
misleading the entity posting the tasks.

In order to avoid getting caught, Turkers, instead of exact
copying, often make minor changes to their responses such
as adding noise, which makes collusion detection more chal-
lenging. We identify this type of colluding behavior as non-
adversarial, as the goal of the participants is to accumulate
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payments without doing the actual work, rather than having
any malicious intent to boost up certain product ratings or
to lower ratings of competing products or sites. Although at
first glance, it may seem that the damage caused by this type
of collusion is mostly financial in nature, our analysis reveals
that several statistical metrics such as the mean, median, and
variance experience significant shifts as an unfortunate side-
effect of collusion. In this paper, we propose algorithms to
detect this type of non-adversarial collusion and counter its
side-effects on real collected data and synthetic data with
similar properties.

Social networks, crowdsourcing, e-auctions, and e-
education open several new possibilities in exchanging in-
formation. However, such interactions are beneficial to all
the parties involved if participants follow certain rules
of engagement, whether explicit or tacit. One common
type of rule is one-persona per person, another is non-
collusion among participants. We see our work as a part
of a growing literature on detecting violations of these
rules and countering the damage caused by such violations
(Lasecki, Teevan, and Kamar ). Past work in collusion de-
tection has focused on player-player collusion in compet-
itive games (Vallve-Guionnet 2005; Smed, Knuutila, and
Hakonen 2007; Mazrooei, Archibald, and Bowling 2013),
on cheating by colluding on multiple-choice exams (Er-
cole et al. 2002; Wollack 2003), on plagiarism as a form
of collusion (Irving 2004), and most recently on on-line
reputation and rating systems (Liu, Yang, and Sun 2008;
Allahbakhsh et al. 2013). In contrast, we address collusion
in crowd-sourcing such as in AMT, which seeks to minimize
work, maximize profit, but causes harm as a side effect un-
like falsely inflating or trashing on-line reputations, or theft
by collusion in on-line gambling. Our research addresses
the case of “real” colluding teams of users and the multi-
doppelganger case of one person creating phantom collud-
ing partners, and any combination of k persons controlling
n ≥ k colluding e-personas, since the methods detect pat-
terns of potential collusion, regardless of the bi-partite map-
ping between e-personas and real people, or between people
who do the real work and those who merely copy and obfus-
cate.

The first contribution of this paper is to identify non-
adversarial collusion as a serious threat in introducing cer-
tain biases to the obtained data and to make a real-world
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data set with admitted collusion of this type publicly avail-
able for the first time 1. To the best of our knowledge of the
literature, this is the first work that realizes this type of non-
adversarial collusion as a potential threat and explores the
extent of damages caused by such behavior. Through a series
of experiments on both real and synthetic data, we show that
in the presence of non-adversarial collusion, there is a sig-
nificant shift in the mean and the KL divergence between the
true distribution and the observed distribution. As a second
contribution we propose methods to detect such collusion
and show that after taking corrective measures based on the
findings of our detection algorithm, we can eliminate most
of the bias caused by it. Our results show that our method
is fairly robust to the percentage of colluding participants
even when the number of colluders is high as 50% of the
total participants. Finally, we offer insights into how to de-
sign rating tasks to facilitate early detection by a thorough
analysis on several datasets varying the parameters of our
collusion model.

Throughout the entire paper, we used the following terms
raters, Turkers and participants interchangeably. The rest of
the paper is organized as follows. After a discussion of re-
lated work (Section 2), we illustrate the damage of non-
adversarial collusion detection with a simple example. (Sec-
tion 3). This is followed by a description of our data (Section
4), detection methods (Section 5), evaluation metrics (Sec-
tion 6) and a presentation and discussion of the results from
our experiments (Section 7). We end with some general con-
clusions and an outlook on future work (Section 8).

2 Related Work

In view of the sizeable literature on detection of malicious
collusion in Collaborative Filtering systems (Lam and Riedl
2004; Allahbakhsh et al. 2013; Mehta, Hofmann, and Nejdl
2007), the scarcity of work on non-adversarial collusion in
crowdsourcing situations is rather surprising. While many
aspects of both situations are similar, the differences imply
the need to explore a different approach and new detection
algorithms.

A first distinction lies in the colluder’s intent. In shilling
attacks or profile injection attacks in Collaborative Systems,
malicious shillers aim to influence the outcome of the rec-
ommendation system. For a similar reason, our work is dif-
ferent from (Lasecki, Teevan, and Kamar ) which also iden-
tifies collusion as a serious threat to crowdsourcing where
colluders can extract sensitive data by exchanging informa-
tion. In non-adversarial collusion situations, colluders are
not concerned with the outcome of the recommender sys-
tem or extracting sensitive data per se, just with avoiding the
effort required for producing the ratings without reduction
in remuneration. That is, their primary aim is laziness.

(Marcus et al. 2012) raised the possibility of a sophisti-
cated group of Turkers coordinating a Sybil attack on a trun-
cated mean-based crowd-powered algorithm and proposed
an effective and scalable solution of randomly distribut-
ing gold standard items throughout the tasks. Although this

1The data set can be downloaded from
http://www.cs.cmu.edu/ akhudabu/projects.html.

work raises a pertinent potential threat in crowd-powered
systems, our work is different in the following ways. First,
our techniques are different: our unsupervised algorithm de-
tects collusion by computing the pairwise similarities and
does not require gold standard labels. In fact, for product or
service ratings, there is no gold standard whatsoever. Sec-
ondly, the intention of Turkers setting up a Sybil attack in-
volves skewing the means for their own benefit whereas in
a non-adversarial collusion scenario, the skew is merely a
side-effect.

Additionally, the situations to which the different styles of
collusion apply may be different in the information the raters
are given. Large-scale online rating systems like Amazon
shopping or IMDB provide a detailed summary of how other
people have rated a specific product with mean, median, his-
togram and often demographic information. In a paid online
survey, such information is not usually provided to raters.

Potential collusion strategies will be different between
colluders who strive to promote or sink a product, service or
task (shillers), and those who seek to collect payment with-
out work (non-adversarial colluders). In order to hide from
the detection mechanism, a typical malicious shiller will rate
many products close to their respective means, and, depend-
ing on intent, give extreme low or extreme high ratings for
a small subset of the target products he or she is interested
in trashing or boosting. A typical non-adversarial colluder,
on the other hand, will provide ratings derived from the lead
clique member, with small modifications to avoid detection.
Hence, detection methods used to detect malicious attacks,
usually based on coordinated deviations from the mean for
a subset of tasks, may not be of much use in the case of
non-adversarial collusion. On the other hand, certain plau-
sible malicious attack types (such as automated profile in-
jection attacks or impersonation) are much less likely in our
scenario because of stricter user validation policies for paid
crowd workers.

Another context in which collusion has been studied ex-
tensively is that of test taking, e.g. on multiple choice ex-
ams (Ercole et al. 2002; Argenal, Cruz, and Patungan 2004;
Wollack 2003). The nature of this scenario is more akin to
our own, and several of the indices proposed to detect collu-
sion (generally based on (in)dependence), could be adapted.
Most of these metrics, however, cannot take advantage of
the ordinal nature of rating values (there is generally only
one correct answer in a test).

Yet another context in which collusion has received con-
siderable attention is the socio-economic sense of Game
Theory and Auctions (Mazrooei, Archibald, and Bowling
2013). Although the same term is used, “collusion” in this
case arguably describes a rather different phenonenon than
in the cases considered above, and the majority of the lit-
erature on cartel detection or collusion detection in voting
or sequential games does not address non-adversarial collu-
sion. In most cases, this form of collusion must be deemed
malicious, as it is almost by definition intended to harm other
parties.
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3 The Damage of Non-adversarial Collusion

In this section, we illustrate the problem of non-adversarial
collusion by using a simple example. Table 1 shows a small
5 × 5 window of our real dataset with five tasks denoted as
T1, T2,· · ·, T5, and five participants denoted as P1, P2,· · ·,
P5 of which P1 and P2 are non-colluding, whereas P3, P4

and P5 constitute one colluding clique (as per the obtained
ground-truth labels).

T1 T2 T3 T4 T5

P1 8 6 5 9 2
P2 2 9 5 5 3
P3 4 9 3 3 5
P4 6 8 3 2 5
P5 4 8 6 3 5

Table 1: A 5 × 5 window of a real dataset with colluding
participants

We observe that the colluders are not submitting identi-
cal copies of their ratings, presumably to avoid detection. A
careful examination for possible dependencies reveals how-
ever that the differences in ratings between colluders are
small for each of the tasks (in this example, the maximum
disagreement of 3 is observed, for instance, between col-
luders P3 and P5 on task T3). The difference between non-
colluding raters tends to be larger (for example, the differ-
ence is 6 between P1 and P2 on T1).

We can also note that the average ratings submitted by
colluders and non-colluders are generally close, indicating
that plausibly the colluders did not intend to influence the
rating statistics in any way (non-adversarial). However, the
collusion may nevertheless introduce an unintentional bias
in these statistics can be observed from the table. Without
collusion (i.e., of the colluders, only the one genuine rater is
considered), we have that μ = 3.3 (σ = 1.25). Wich col-
lusion present but undetected, on the other hand, μ = 4.0
(σ = 1.27). That is, collusion introduces a mean shift of
20%. While the results on a small example are not statisti-
cally significant (see the Results section for a more detailed
analysis), the example illustrates that collusion may have a
large impact on the statistial reliability of the results, and it is
in the interest of the crowdsourcer to eliminate its influence.

4 Data

Obtaining reliable real-world data for testing the effec-
tiveness of our collusion-detection algorithm is difficult for
the following reasons. First, much of the crowdsourced data
for product ratings is closely held by marketing companies
or the product producers. It is gathered because its compet-
itive business value, and sharing it may negate such value.
Secondly, labeling data for colluding cliques requires a sig-
nificant amount of time and effort, and in many cases do-
main expertise. This, points to the need for unsupervised
methods, and was in fact one of the motivating factors be-
hind our automatic detection endeavors. Finally, since col-
lusion is not generally acceptable behavior and sometimes
subject to penalties (e.g., cancellation of payment or future

barring), colluders may not admit to their actions, making
the collection of gold-standard ground truth even more chal-
lenging.

For these reasons, in addition to a real dataset with
ground-truth ratings, consisting of anonymized product rat-
ings obtained from a large e-commerce organization, we
have generated a large number of synthetic rating scenar-
ios roughly modelled to have the same properties as the real
data set. The real data set consists of (incomplete) rating data
(values on an integer rating scale from [1..10]), from 123
participants, over 20 densely populated tasks. The identifica-
tion of collusions is by obtaining an admission from the col-
luders after the fact. Hence it is very unlikely to contain false
positives. The data set is smaller than we would like, and is
somewhat biased towards higher collusion probability, even
after later addition of data from (presumed) non-colluding
participants. 36 users (approx 30%) admitted to colluding,
in approximately 6 cliques ranging from 2−11 clique mem-
bers per clique. In the part of the data from the same sur-
veys that was not made available, there were no known col-
lusions. While the condition of releasing the data is to re-
main anonymous (the e-commerce organization do not want
to publicize to their customers that crowd-surveys can and
do have colluders), if we respect confidentiality, there are
no restrictions in sharing this data publicly. Quite the oppo-
site, the company would benefit from more work in this area.
Also, we encourage others to collect similar data in greater
quantities and make it publicly available.

Figure 1 presents the rating distributions of colluders vs.
non-colluders, and shows that there are no major disagree-
ments in the average rating for any of the tasks. However,
note that colluders sometimes may shift the mean consider-
ably, and thus present a false picture of the aggregate opin-
ion.If the colluding group just happens to express the aver-
age opinion, then this will not occur (only a variance shift
leading the false belief of greater concurrence, but that is
a secondary effect). But if the colluding group represents a
more extreme opinion, the mean shift can cause a major mis-
perception of the true aggregate opinion. Hence detecting
and removing colluding groups corrects for the false mean
shift.

Figure 1: Rating distribution of collluders vs non-colluders.

106



We generated our synthetic dataset to be comparable to
the real-world data under the following initial assumptions.

• Task type: Numerical rating task using the same fixed
scale.

• Task difficulty: equal difficulty and no colluder has any
additional incentive to collude on some specific subset of
tasks.

• Task interdependence: none. That is, for any given rater
Ri, her ratings for any task pair Tj and Tk are indepen-
dent.

• Distributional assumption: rating distributions for each
task are mixture distributions of two truncated Gaussians
(many real-world rating distributions are approximately
bimodal).

• Agent participation: dense. Since crowdsourcers need
statistically sufficient data to compute rating statistics, we
assume that all participants take part in a significant block
of tasks.

• Collusion behavior: colluding participants form cliques
(of minimum size 2). Within each clique one participant
(the clique leader) actually performs the rating task. The
others (clique followers) copy the leader’s ratings, and
submit these after adding limited noise to obfuscate. Our
real dataset is too small to reliably identify the optimal
distribution that characterizes the noise. Given that the
obfuscation attempts appear to be symmetric about the
mean, and mostly not too far from the mean, an initial
assumption of Gaussian noise was made – and it is not un-
reasonable given that conditional on said assumption we
can recover the known collusion cliques. A larger data set
would be required to characterize the obfuscation-injected
noise more precisely.

For our initial experiments, we have kept fixed the num-
ber of tasks (20) and participants (60), and generated 5100
instances of rating scenarios for varying collusion prior
pcoll ∈ [0.00, 0.01..0.50] (100 instances for each collusion
prior value). Later we increased the number of tasks.

We were informed by the provider of the collusion data
that the number of expected colluding raters are a minority
compared to the total parties genuinely providing ratings.
Hence we chose to run the collusion ratios between [0.0
and 0.5] to cover the range of expected colluding fraction
of raters. However, there is nothing in our method that sets a
hard limit of 0.5; we expect our algorithm to degrade grace-
fully as the number of colluders increases. In fact, we ran
one experiment with the ratio at 2/3 colluders (0.67). On 100
such instances, we obtained an overall accuracy of 87.71%
with no false positives (precision of 84.34%).

5 Detection Methods

Our basic algorithm FINDCOLLUDERS is presented in Al-
gorithm 1.
In general, we try to detect collusion by finding strong inter-
rater dependence across tasks, especially as these diverge
from the mean ratings. Of the various schemes we have ex-
plored, the following fairly direct algorithm performed the

Input: A set of m participants P1, P2, · · ·, Pm. A set of
n tasks T1, T2, · · ·, Tn. An m× n matrix R.
R〈i,j〉 denotes the response of the i-th
participant to j-th task.

Output: An m×m matrix C such that C〈i,j〉 = 1 if Pi

has colluded with Pj , or 0 otherwise.
Initialize
C〈i,j〉 = 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ m
Subtract the column mean from individual columns
R′

〈i,j〉 ← R〈i,j〉 − 1
n

∑
j R〈i,j〉

R ← R′
Compute the m×m similarity matrix S based on a
similarity measure
for pOne ← 1 to m do

for pTwo ← 1 to m do
if S〈pOne,pTwo〉 > threshold then

C〈pOne,pTwo〉 ← 1
end

end

end
return C

Algorithm 1: FINDCOLLUDERS Basic collusion detection
algorithm

most accurately and robustly on both our real-world data and
the synthetic data we modeled on the basis thereof.

In our implementation, we use cosine similarity as our
similarity measure. Cosine similarity between two vectors
A and B is defined as

sim(A,B) =

n∑
i=1

Ai×Bi√
n∑

i=1

(Ai)2×
√

n∑
i=1

(Bi)2

For the sake of correctness of our algorithm, we define S in
the following way:

S〈i,j〉 =
{

sim(R〈i,.〉, R〈j,.〉) if i �= j
0 if i = j

where R〈i,.〉 denotes the response of Pi on all tasks.
Note that since collusion is symmetric, derivation of the

cliques from the pairwise collusion relationships is straight-
forward. Also, if we only care about if a rater has colluded
with any other rater or not, the binary classification prob-
lem is trivially solvable from the pairwise collusion relation-
ships. For a given pair of raters, the complexity of comput-
ing the similarity measure is O(n) where n is the number of
tasks, and we need to compute this for every pair of raters.
So the overall complexity of our algorithm is O(m2n).

Our method has the following limitations. Since we iden-
tify pairwise-similarity beyond a certain threshold as indica-
tive of collusion, our approach is limited to opinion-based
rating problems. Our approach may perform less well on
more objectively grounded tasks (e.g., multiple choice la-
beling or testing) because it may identify raters choosing
correct answers as potential colluders. Also, we acknowl-
edge that it is possible that people with extremely similar
preferences may lead to false positives.

107



Our main classification criterion (and only continuous pa-
rameter) is the threshold, which we set empirically to a
fixed value of 0.85. As we show below, this setting proved
robust regarding the performance of FINDCOLLUDERS
across a variety of parameters (such as users, tasks, and dis-
tributions), with some bias towards precision rather than re-
call (i.e., benefit of the doubt).

6 Evaluation Metrics

Evaluating the performance of our detection algorithm can
be done in different ways depending on our objective. If we
only care about barring the colluders from future participa-
tion, identifying the colluders is sufficient. In that case, this
problem can be treated as a standard binary classification
problem and a high recall and precision value will achieve
the objective. However, if we want to make necessary adjust-
ments in order to do meaningful analysis on the data (e.g.,
computing the mean, estimating the maximum-likelihood
estimation (MLE) of the multinomial for a given task), we
further need to correctly identify the cliques to which the
colluders belong. For example, identifying a big clique as
many smaller cliques will not affect the standard measures
of accuracy, precision and recall, but we may not be able to
recover the true mean as well as we could if we identified
the big clique accurately.

Consider a simple scenario of just one clique of size 5
which the detection algorithm identifies as a clique of size
3 and a clique of size 2. Consider there is a task which
the two-membered clique has rated 1,2 (effective mean 1.5)
and the three-membered clique has rated 3,4,5 (effective
mean 4). If we consider these as two separate cliques, our
effective mean will be 1.5+4

2 = 2.75. However, since all
these ratings are coming from the same clique, the actual
effective mean should be 1+2+3+4+5

5 = 3. Clearly, for
this task, our incorrect clique-detection results in only par-
tial recovery of the mean. We evaluate the performance of
FINDCOLLUDERS both in terms of detection-accuracy and
its ability to eliminate side-effects (e.g., mean-shifts) caused
by non-adversarial collusion.

7 Results

7.1 Accuracy, precision and recall

On our synthetic data, we found that FINDCOLLUDERS
performed consistently well. Figure 2 summarizes the per-
formance of FINDCOLLUDERS on our synthetic data (in
terms of precision, recall, and accuracy) as a function of
collusion prior. We found that even when the collusion prior
was as high as 0.50, we achieved a very high precision (99%)
and recall (93%).

On the real-world dataset, FINDCOLLUDERS achieved
an accuracy of 93.50% (recall: 94.74%, precision: 85.71%).
These results are somewhat lower than in the simulated data,
perhaps because the assumptions do not fully hold in the
wild. Alternatively, some false positives may be the result of
actual colluders failing to admit to their copying behavior in
establishing ground truth.
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Figure 2: Performance of FINDCOLLUDERS on synthetic
dataset comprising 5100 instances. Each instance is a rating
scenario with 60 participants and 20 tasks. Collusion prior is
varied from 0 to 0.50 at a step-size of 0.01.

7.2 Robustness with respect to system parameters

We acknowledge that it is possible that people with similar
preferences may lead to false positives. However, the collud-
ers agree on ratings for a considerable number of vastly dif-
ferent products, far more than having similar opinions about
certain products or services would imply. The more ratings
for different uncorrelated products obtained per rater, the
smaller the probability of agreement via similar opinions.
Figure 3(a) shows the expected result that performance in-
creases with the number of tasks, and 99% or higher accu-
racy and precision is achieved when we have 25 tasks or
more per worker.

Although realistically, we don’t expect to have a very high
number of tasks per worker, in order to examine the scal-
ability of our algorithm, we ran it on 51 instances where
each instance consists of 1000 raters and 1000 tasks, col-
lusion prior is varied from 0 to 0.5 at a step size of .01
(one instance for each collusion prior value). On this dataset,
FINDCOLLUDERS achieved an accuracy of 100% without a
single false positive. On an intel core i5-2400 machine run-
ning MATLAB 7.12.0 (R2011 a) in a Windows 7 environ-
ment, our detection algorithm took less than a minute per
instance which confirms that this algorithm is computation-
ally tractable and can be suitably modified to perform detec-
tion online.

To gain insight into the sensitivity of the threshold
parameter to small changes in its value, we plot its influence
on accuracy, precision, and recall (Figure 3(b)). The algo-
rithm appears robust with respect to this parameter, and our
choice at the high end of this range ensures the number of
false positives will be limited.

Also on the real-world data, we varied the number of tasks
(i.e. selecting a subset of the 20 given). Our results are qual-
itatively similar to the results obtained on the synthetic data-
set.
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(a) # of Tasks Versus Accuracy, Precision and Recall
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(b) Threshold Versus Accuracy, Precision and Recall

Figure 3: Performance of FINDCOLLUDERS with varying number of tasks and threshold on our synthetic dataset.

7.3 Countering the side-effects of non-adversarial
collusion
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Figure 4: Comparison of mean-shifts on our real dataset in a
per-task basis.

We have already illustrated in the previous sections how
mean-shifts can result from non-adversarial collusion and
how inaccurate idenfication of cliques affects recovery. On
our synthetic and real-word dataset, we observe that indeed,
substantial mean-shifts can happen if we use no collusion-
detection mechanism and naively assume that every partici-
pant is non-colluding. In order to underscore the importance
of detecting non-adversarial collusion and to explore the ex-
tent of its potential damage, we compare the performance of
FINDCOLLUDERS against a baseline that assumes no raters
colluded.

For a given task Tl, a baseline that assumes no raters col-
luded estimates the mean as μ̂ND = 1

n

∑
i R〈i,l〉. A detec-

tion algorithm that has identified k cliques- c1, c2, . . . , ck,
estimates the mean as μ̂DA = 1

(n+k−
∑

k
|ck|) (A+B)

where | cr | denotes the size of the r-th clique,
I(L) is just an indicator function that returns 1 if L is true,
otherwise returns 0, A =

∑
i R〈i,l〉I(Pi /∈ ∪k ck), and

B =
∑

k
1

|ck|
∑

i R〈i,l〉I(Pi ∈ ck). Basically, a clique is
treated as just one individual rater with an effective rating as
the mean of the ratings of all members belonging to the par-
ticular clique. The mean-shift for a given task is computed
as abs(μ̂−μ̂O)

μ̂O
where μ̂O is the estimate by an oracle that has

perfect information about the cliques.
Figure 4 presents the mean-shifts on our real-world

dataset for each task. The green bar denotes abs(μ̂DA−μ̂O)
μ̂O

and the red bar denotes abs(μ̂ND−μ̂O)
μ̂O

for each task. Figure 4
shows that different tasks experienced different amount of
shifts in their respective means, which implies a constant
compensation will not be particularly useful. At least half of
the tasks experienced a mean-shift of 5.33% or higher (up
to 17.94%). With adjustments based on our detection algo-
rithm, this improves by roughly a factor of 6 (median and
maximum reduced to 0.70% and 2.85% respectively) and
capped under 5% across all tasks.

We summarize the experimental results on our synthetic
data in 5(b). In the baseline (no detection) the mean-shift
steadily increases as we increase the collusion prior. At 0.5,
the median of the mean-shifts is 7.5% with the maximum
being 27%. With adjustments based on FINDCOLLUDERS,
we obtain a substantial improvement – the maximum mean
shift remains below 6% even for a collusion prior as high as
50%.

Another way to measure damage is to observe the changes
in the distributions extracted from the data. Let us consider
the maximum likelihood estimates of the multinomial distri-
butions on a per-task basis. For a given task T , let an oracle
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Figure 5: Performance comparison on eleminating strong biases incurred due to collusion on our synthetic dataset.

estimate the multinomial distribution as P̂O, where the base-
line estimate (no detection) is P̂ND, and our detection algo-
rithm combined with necessary adjustments obtains P̂DA .

As a measure of corruption of the distributions, we use
the Kullback Leibler Divergence, denoted as DKL(P ‖ Q),
defined as Σiln(

P (i)
Q(i) )P (i) (P and Q both are discrete prob-

ability distributions), which, simply put, is a measure of the
information loss if Q is used to approximate P .

For each task, we compute DKL(P̂O ‖ P̂ND) and
DKL(P̂O ‖ P̂DA). Figure 5(a) shows a similar qualitative
trend as 5(b). We find that DKL(P̂O ‖ P̂ND) steadily in-
creases as collusion prior increases. When collusion prior is
0.5, the median of DKL(P̂O ‖ P̂ND) across tasks is 0.13
with the maximum being 0.25. However, throughout the en-
tire dataset, the maximum of DKL(P̂O ‖ P̂DA) is restricted
below 0.05 which clearly shows that our detection algorithm
brings in a considerable improvement in eliminating the bi-
ases introduced by collusion. On our real-world dataset, we
obtain a similar performance (roughly, a factor of 7 improve-
ment). The maximum and the median of DKL(P̂O ‖ P̂NA)
across tasks were 0.079 and 0.0394, respectively, whereas
the maximum and the median of DKL(P̂O ‖ P̂DA) were
0.0112 and 0.0053, respectively.

Finally, all our experiments on synthetic datasets are re-
peated with 40 tasks instead of 20. We find all the results
qualitatively similar to what we present here. Moreover, we
achieved higher accuracy as precision improves with addi-
tional tasks per rater (See, Figure 3(a)).

8 Discussion

8.1 Conclusion

In this paper we have identified and investigated non-
adversarial collusion as a potentially serious threat in crowd-
sourcing. We have shown that its unintentional results may
lead to significant shifts in the mean and and KL diver-

gence between distributions. We have proposed a method
to detect non-adversarial collusion, and demonstrated that in
our current setting, on both real-world and synthetic data, a
simple algorithm suffices to not only detect most cases of
collusion, but also eliminate most of its side-effects. The
FINDCOLLUDERS algorithm proved fairly robust with re-
spect to the parameters of the scenario as well as the algo-
rithm itself.

8.2 Future work

This paper opens the gates to research in non-adversarial
collusion detection and counter measures; there is still much
to be done, including:

• Occasional colluders and other variants: Initially, we
tried to adhere to the simplest possible assumptions while
generating our synthetic dataset. This was mainly because
a) since this type of collusion has not been studied in the
literature, we wanted a reasonable starting point to begin
our investigation b) we wanted to illustrate that even under
the simplest assumptions, non-adversarial collusion can
have substantial side-effects on estimating statistics from
the data. However, we have already started relaxing some
of these assumptions as a potential future direction.
It is possible that some raters collude on some occasions
and not others. Perhaps only if they can round up their
friends, or they find the rating tasks onerous. This makes
the collusion detection more challenging, since it can be-
come task-group or temporally dependent. We have in fact
already set out to investigate this case, and our prelim-
inary results indicate that our algorithm maintains good
results as long as the collusion behavior is systematic
enough. One rater colluding with multiple cliques is an-
other direction we are looking into.

• Validation on multiple real data sets. These are very dif-
ficult to obtain. We will make our anonymized data set
public, as well as our synthetic data.
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• Outliers: In the forseen arms race between colluders and
detectors, the former could attempt to thwart our detection
methods by including a few ratings that are very far from
the ones copied. This would require a method to detect
and disregard sparse outliers.

• Matrix completion: In cases where there is a large matrix
of raters and tasks, but it is only semi-sparsely populated,
it is possible that matrix completion could yield a more
meaningul dense, or partially-dense matrix on which to
do the analysis.

• Incorporate Machine Learning techniques: We can learn
which types of tasks (based on task features) or types of
raters (based on rater features) are more likely to col-
lude, and use these as priors for the detection model.
This would require supervised learning (Mitchell 1997;
Hastie, Tibshirani, and Friedman 2009), and would be
enhanced by active learning (Roy and Mccallum 2001;
Donmez, Carbonell, and Bennett 2007).
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