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Abstract Learning how to refer effectively in an expert-referral network

is an emerging challenge at the intersection of Active Learning and Multi-

Agent Reinforcement Learning. Distributed interval estimation learning

(DIEL) was previously found to be promising for learning appropriate

referral choices, compared to greedy and Q-learning methods. This paper

extends these results in several directions: First, learning methods with

several multi-armed bandit (MAB) algorithms are compared along with

greedy variants, each optimized individually. Second, DIEL’s rapid per-

formance gain in the early phase of learning proved equally convincing in

the case of multi-hop referral, a condition not heretofore explored. Third,

a robustness analysis across the learning algorithms, with an emphasis on

capacity constraints and evolving networks (experts dropping out and new

experts of unknown performance entering) shows rapid recovery. Fourth,

the referral paradigm is successfully extended to teams of Stochastic

Local Search (SLS) SAT solvers with different capabilities.
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1 Introduction

Human experts may refer to other experts when given problems outside their
area of expertise. In a clinical network, a physician may diagnose and treat a
patient or refer the patient to another physician whom she believes may have
more appropriate knowledge, conditioned on the presenting symptoms. Referral
networks are common across other professions as well, such as members of large
consultancy firms. In addition to human professional networks, we can envision
referral networks of automated agents, such as the SAT solver network introduced
in this paper, or heterogeneous networks of human and machine agents. In all
cases, unless the experts are omniscient they often need to consult or refer
problems to their colleagues. This paper addresses learning to whom an expert
should refer given a problem and topic, attempting to optimize performance
based on accumulated experience of the results of previous referrals. We address
the distributed learning-to-refer setting, without a “boss agent" telling all the
others when to try and solve a problem or when to refer and if so to whom.

Much of this work is based on DIEL, a simple but efficient algorithm balancing
exploration with exploitation, which has been proposed in [1]. Previous work is
summarized in Section 2. Section 3 presents our assumptions and the structure
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of referral networks and expertise. Sections 4, 5 and 6 describe the distributed
learning algorithms we used in the comparison, our experimental setup, and the
results.

2 Related Work

Our primary predecessor for this work was the referral learning framework
proposed in [1], although that work did not extend to comparison among compet-
ing algorithms, nor address capacity constraints, nor robustness to unexpected
dropouts and additions to the network, which is needed for modeling actual net-
works of human experts. This paper also addresses fully-autonomous SAT-solver
agents, vs just simulated experts. A completely different approach was taken
in [2], which extends the same referral framework by augmenting the learning
setting with an advertising mechanism, where experts can post estimates of their
skill level in different tasks, encouraging truth-in-advertisement.

The problem of learning appropriate referrals can be cast in various ways.
Taking it as a multi-armed bandit (MAB) selection problem, we accordingly
enlisted several MAB algorithms [3, 4, 5] with known finite-time regret bound
for performance comparison, none of which have as far as we know been studied
in the context of referral learning before. An analysis of referral networks also
exhibits similarities with the study of task allocation [6, 7], where minimizing
turn-around time corresponds to the maximizing the probability of a correct
answer. The FAL algorithm described in [7] uses a variant of ϵ-greedy Q-learning
similar to one we compared favorably against in the current work.

Finally, in part of this work, we used SATenstein [8], a highly parameterized
Stochastic Local Search (SLS) SAT solver to generate non-synthetic experts and
expertise data. This was done previously [9] in the context of the augmented
setting discussed in [2]. Here we systematically apply a set of referral algorithms
(as opposed to two), and use continuous rewards (as opposed to binary) to
introduce the notion of solution quality.

3 Referral Networks

A referral network can be represented by a graph (V, E) of size k in which each
vertex vi corresponds to an expert ei (1 ≤ k) and each bidirectional edge ⟨vi, vj⟩
indicates a referral link. We call the set of experts linked to an expert ei by
a referral link, the subnetwork of expert ei. In a referral scenario, a set of m
instances (q1, . . . , qm) belonging to n topics (t1, . . . , tn) are to be addressed by
the k experts (e1, . . . , ek).

Assuming a query budget of Q = 2, the following steps are executed for each
instance qj .
1. A user issues an initial query to an expert ei (initial expert) chosen uniformly

at random.
2. Expert ei examines the instance and solves it if able, depending on the

expertise of ei wrt. qj , defined as the probability that ei can solve qj correctly.
3. If not, she passes a referral query to a referred expert within her subnetwork.

Learning-to-refer means improving the estimate of who is most likely to solve
the problem.
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4. If the referred expert succeeds, she communicates the solution to the initial
expert, who in turn, communicates it to the user.

We also considered in our experiments the case Q > 2, when the recipient of a
referral can herself re-refer to another expert (with reduced budget).

For the simulations, we follow (initially) the assumptions made in [1], notably
that: network connectivity depends on (cosine) similarity between the topical
expertise, expertise is stationary, and its distribution can be characterized by a
mixture of Gaussian distributions (for further details, see [1, 2]).

4 Distributed Referral Learning

Essentially, from the point of view of a single expert, learning appropriate referral
choices for a given topic is an action selection problem. Action selection using
Interval Estimation Learning (IEL) works in the following way [2, 10]. First,
for each action a, the upper confidence interval for the mean reward (UI(a)) is
estimated by

UI(a) = m(a) + s(a)√
n

(1)

where m(a) is the mean observed reward for a, s(a) is the sample standard
deviation of the reward, n is the number of observed samples from a. Next, IEL
selects the action with the highest upper confidence interval. The intuition behind
selecting the action with the highest mean plus upper confidence interval is that
high mean indicates good expected performance and high variance indicates we
lack knowledge about said performance. This naturally trades off exploitation
(selecting high mean) and exploration (resulting in variance reduction). An earlier
version of DIEL [1] used an additional Student’s t-distribution parameter, here
we are using the version reported in [2], which is parameterless and outperformed
the earlier version.

In a distributed setting, each expert is running a thread of action selection
for each topic in parallel. So basically, DIEL consists of multiple IELs for each
topic/expert pair. Categorized into three broad categories: Q-Learning variants,
UCB-variants and greedy-variants, our choice of referral algorithms is presented
in Table 1. The distributed versions of these algorithms function the same way as
DIEL – only their action selection procedure is different. Ideally, the distributed
version of UCB1 should be called DUCB1; but since we have both Q-Learning [11]
and DQ-Learning [12] in our pool of algorithms, we slightly abuse the notation
in order to avoid confusion.

A primary challenge in the distributed setting is that there is no global
visibility of rewards, i.e., reward(ei, topicp, ej) (a function of the initial expert ei,
instance topic topicp, and referred expert ej) is only visible to expert ei. Also,
because of the scale, in a practical setting, we cannot afford a large number of
referrals for finding suitable referral choices. For this reason, a high performance
in the early phase of learning is crucial.

In the following description of the action selection procedures, m(a) is the
mean observed reward for action a, na is the number of observations of a, and N
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Table 1. Referral Algorithms

Category Algorithm Parameters

IEL DIEL [2] None

Greedy DMT [1] None

Greedy ϵ-Greedy [13] c

Greedy ϵ-Greedy1 α

UCB UCB1 [3] None

UCB UCB2 [13] None

UCB UCBNormal [4] None

UCB UCBV [5] θ

Q-learning Q-learning [11] α, γ, ϵ

Q-learning DQ-learning [12] α, γ, ϵ

is the total number for all actions.

DMT: Unlike DIEL, DMT only considers the mean observed reward and always
greedily picks the action with the highest mean reward.

ϵ-Greedy: DMT, being purely greedy, can easily get stuck with a sub-optimal
referral choice. ϵ-Greedy performs a diversification step with a probability ϵ. i.e.,
with probability ϵ, it randomly chooses one of the connected experts for referral.

ϵ-Greedy1: ϵ-Greedy1 differs from ϵ-Greedy only in its way of setting the diver-
sification probability parameter (set to α∗K

N where K is the subnetwork size, i.e.,
the total number of referral choices).

UCB1: UCB1 selects the action with highest m(a)+
√

2lnN
na

. This implies among
two actions with equal mean reward, UCB1 will favor the least sampled one.

UCB2: UCB2 executes in an episodic fashion. Once an action is selected, it is
executed for an episode. For each action a, it first initializes ra to 0 where ra

denotes the episode length and each action is executed once in the beginning. If
the last selected action j has been played for rj times in a row, the new action is
selected by maximizing m(a) +

√
(1+α).ln(eNτ(ra))

2τ(ra) where τ(ra) = (1 + α)ra and
α is a configurable parameter.

UCB-normal: UCB-normal performs any action that has been executed less than
⌈logN⌉. Otherwise, the action with highest m(a) +

√
16. sq(a)−na.m(a)2

na−1 . ln(N−1)
na

is chosen (sq(a) is the sum of squared rewards obtained from action a).

UCBV: Similar to DIEL, UCBV also uses variance to compute expected reward.
However, it uses a different exploration function, logN

na
. UCBV selects the action

with highest m(a) + s(a).
√

2θlog(N)
na

+ 3θlog(N)
na

. [5] reported a value of 1.2 for the
parameter θ to guarantee logarithmic convergence.
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DQ-Learning: Double Q-Learning, or DQ-learning, consists of two standard
Q-Learning algorithms running in tandem (with Q functions: QA and QB , say).
Whenever an action is chosen based on QA, the observed reward is used to
update QB and vice versa. In practice, DQ-Learning tends to converge faster
than Q-Learning (for further details, see [12]). For Q-Learning, we considered
ϵ-Greedy-Q-Learning.

5 Experimental Setup

We compared the DIEL referral-learning algorithm against the nine other al-
gorithms in Table 1), a topical upper bound, and a random (expertise-blind)
baseline. Each parameterized referral algorithm was tuned on a separate training
set constructed using the same parameter distribution described in [1]. For each
algorithm, we ran 100 random instantiations of the algorithm on the training
data set and selected the configuration that performed best on this set. The
ϵ-Greedy algorithm, as presented in [13], requires prior knowledge about the
reward distribution in order to set the value of the hyper-parameter d. However,
we found that estimating d from the observations created sub-par performance.
Setting instead ϵ to α∗K

N (where K is the subnetwork size and N is the num-
ber of total observations) gave rise to a good performance when appropriately
configured. We followed a similar procedure to set ϵ for ϵ-Greedy Q-learning.

Our test set for performance evaluation is the same data set used in [1, 2]. It
consisted of 1000 scenarios, each with 100 experts (average connection density
16.05 ± 4.99), 10 topics and a referral network. Our measure of performance is the
overall task accuracy of our multi-expert system. For the sake of comparability,
for a given simulation across all algorithms, we chose the same sequence of
initial expert and topic pairs. For our per-instance query budget, Q, we chose
the values 2, 3, and 4, corresponding to single-hop, two-hop and three-hop
referrals, respectively. Following [1], our upper bound for single-hop referral is
the performance of a network where every expert has access to an oracle that
knows the true topic-mean (i.e., mean(Expertise(ei, q) : q ∈ topicp) ∀i, p) of
every expert-topic pair. For two-hop referrals, we use an upper bound based on
calculating optimal referral choices up to depth 2. Finally, the baseline is an
Expertise-Blind algorithm where the initial expert randomly chooses a connected
expert for referral.

The 100 SATenstein solvers we used are obtained by configuring SATenstein2.0

on six well-known SAT distributions (distribution and solver details can be found
in [8]). We used the test sets of the SAT distributions as our pool of tasks. Our
experiments were carried out on a cluster of dual-core 2.4 GHz machines with 3
MB cache and 32 GB RAM running Linux 2.6.

6 Results

6.1 Performance comparison on synthetic data

Single Hop Referral: For single referral, Table 2 presents the mean task
accuracy across the entire data set at specific points of the horizon (samples per
subnetwork). For a given horizon, the best performance is highlighted in bold.
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Table 2. Performance comparison of referral algorithms with query budget Q = 2

500 1000 1500 2000 3000 4000 5000

Upper Bound 79.47 79.31 79.27 79.42 79.38 79.41 79.47

DIEL 67.73 73.35 75.35 76.33 77.33 77.76 77.96

DMT 70.63 73.06 73.83 74.20 74.54 74.71 74.69

ϵ-Greedy 55.33 56.63 57.80 58.95 60.57 61.95 62.97

ϵ-Greedy1 70.22 72.91 73.97 74.48 74.92 75.19 75.32

UCB1 57.78 59.60 60.80 61.61 63.28 64.49 65.49

UCB2 63.71 64.16 64.19 64.21 64.18 64.19 64.28

UCB-normal 54.38 54.47 54.71 54.97 56.43 58.91 61.39

UCBV 54.99 55.92 56.44 56.87 57.83 58.60 59.15

Q-Learning 65.46 69.19 70.98 72.08 73.46 74.27 74.75

DQ-learning 70.23 72.68 73.74 74.37 75.14 75.60 75.91

Expertise-Blind 54.48 54.46 54.45 54.41 54.48 54.44 54.60

Our results show that except during the very early stages of the simulation, DIEL

dominated all the other referral algorithms with a performance approaching the
optimal upper bound. A paired t-test reveals that beyond the crossover point
(1000 samples per subnetwork), DIEL is better than all other referral algorithms
with p-value less than 0.0001. Algorithms with provable performance guarantees
may catch up with DIEL given a sufficiently large horizon, but from a practical
standpoint, DIEL is an effective referral algorithm to handle real-world scenarios.
We extended a random subset of 200 scenarios up to a horizon of 20,000 samples
per subnetwork, at which time none of the top performing referral-algorithms
from each category had caught up with DIEL.

All referral learning algorithms performed better than our baseline, the
expertise-blind referral. Although DQ-learning and ϵ-Greedy1, the best algo-
rithms in the Q-learning and greedy category respectively, obtained a performance
close to DIEL, this was conditional to tuning on training data of similar distribu-
tional properties. In contrast, DIEL is parameterless and thus does not require
additional configuration.

For the remaining results, we retained only the best-performing algorithms in
each category, as follows: DIEL (IEL category), ϵ-Greedy1 (Greedy category),
UCB1 (UCB category) and DQ-learning (Q-learning category). For comparison,
we included additionally, DMT, a horizon-free algorithm.

Multi-hop Referral: In a multi-hop setting, a referred expert can continue
referring an instance to another expert as long as the budget permits (excluding
cyclic referrals). Figure 1 compares our top-performing referral algorithms with
query budget 3 and 4. In Figure 1(a), we compare the performance with an upper
bound that calculates optimal choice to depth 2 (optimal choice to depth 1 but
the same query budget 3 achieved a task accuracy of 93.05%). Understandably,
with a higher query budget, the overall task accuracy of every learning algorithm
increases. However, DIEL’s rapid performance gain in the early phase of learning
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Figure 1. Multi-hop referrals
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Figure 2. Performance of DIEL with network changes

still enables it to obtain a superior performance. The practical benefit of DIEL

against algorithms with theoretical convergence guarantees is particularly evident
when compared against UCB1. In fact, DIEL with a lower query budget (Q = 3)
achieves a better performance than UCB1 with a higher budget (Q = 4).

6.2 Robustness of performance

Dynamic network behavior: In practice, referral networks are not static;
they evolve over time with new links are forged, experts drop out or new ones
join, experts gain or degrade expertise, etc. Here we focused primarily on addi-
tion/deletion of experts to the network, both as a one time event with 20% of
the experts in the network replaced at iteration 100, and a distributed change
(modelling more closely a real-world gradual change: 5% of the network changes
every 50 iterations). We also ran experiments where the network changes are
distributed across time-steps and found qualitatively similar performance.

Figure 2 compares the performance of DIEL on a static network with that
on a dynamic network. Our results show that DIEL coped fairly well with a
distributed change, and in spite of multiple changes in the network at a regular
interval, the final DIEL performance on a dynamic network (task accuracy
76.91%) is slightly worse than DIEL on a static network, but still better than
any other referral learning algorithm presented in Table 2. In addition, we ran
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Figure 3. Performance of DMT and DIEL for different values of the load-factor c

experiments where no experts leave or join, but new referral links get created.
Then too, the performance of DIEL proved robust, exhibiting qualitatively similar
characteristics. We also found that DIEL could easily cope with a large one time
network change (see, Figure 2(b)).

Capacity constraints: Capacity constraints on experts are rarely taken into
account in Active Learning (though Proactive Learning [14] considers similar
aspects). In reality, of course, experts can handle only a limited number of tasks
at any given time, and the capacity of the best experts can easily be exceeded.
This was borne out by our simulations – for our DIEL simulations, expertise and
load were correlated with correlation coefficient r = 0.69.

We simulated transient (bursty) overloading. Let load(ei, m) denote the
number of tasks expert ei received among the last m tasks (initial or referred)
the network received. In a network of k experts, a fair load for every expert is
m
k . An expert is overloaded if load(ei, m) ≥ c ∗ m

k , where the load-factor c > 1.
In our experiments we assumed that an expert reaching her load limit becomes
unavailable until completing one or more current tasks. Even with a tight value
of c = 1.5, we find that the performance of the referral-algorithms degrades
gracefully, and surprisingly, sometimes causing a performance improvement
because of forced exploration as tasks are sent to other experts. For example, as
shown in Figure 3(b), the load-balanced version of DMT with a load-factor of 2
slightly outperforms DMT without any capacity constraint. That we observed
a graceful performance degradation with all the referral algorithms leads us to
conjecture that load balancing is facilitated by the distributed nature of the
learning setting.

6.3 SATenstein SLS solvers as experts

So far, we have presented our results on synthetic data and binary rewards. Here,
we describe our results where experts are Stochastic Local Search (SLS) solvers
and the task is to solve a SAT problem instance. In addition to the attractive
properties of SAT solvers listed in [9] (e.g, easy availability of a large number
of experts with differential expertise (Figure 4(a)), and the straight-forward
verifiability of solutions), they allow us to easily express solution quality as a
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Figure 4. Expertise estimates of a subset of solvers on background data of two SAT

distributions and performance comparison with SATenstein solvers as experts

function of run time, allowing us to test the referral algorithms under continuous
rewards.

In these experiments, in order to save computational cycles, we solely focus
on the referral learning behavior of the network; i.e., we assume that the initial
expert always refers a task to a connected expert. We set the budget C for solving
each instance to 1 CPU second, which is the maximum time in which, on a similar
computing architecture, configured high-performance SATenstein solvers were
found to solve a majority of the instances in their expertise area [8] (This was
corroborated in our experiments). The reward is computed as (C - rt) where rt

is the run time (when a solver fails to solve an instance, rt = 1). With C set to 1
in our experiments, the reward is bounded by [0, 1) with a failed task fetching
a reward of 0 and higher rewards implying faster solutions. So in this setting,
through continuous reward, we have incorporated solution quality (in this case,
run time) in our experiments.

Figure 4(b) presents the performance comparison of referral-learning algo-
rithms where experts are SAT solvers and topics are SAT problem distributions
on 10 randomly chosen referral networks. We found that DIEL outperformed all
other algorithms, with DMT, DQ-learning, and ϵ-Greedy1 achieving a perfor-
mance close to DIEL (even when we extended the runs to 4000 referrals per
subnetwork for ϵ-Greedy1, it had not yet caught up with DIEL). Similar to the
results obtained on our synthetic data, we found that UCB had the slowest rate of
improvement in the initial stage of learning. These results highlight the following.
First, even with real experts, a well-defined task and very few distributional
assumptions on expertise, it is possible to learn effective referral choices. Second,
DIEL’s superiority over other referral-learning algorithms is not just restricted
to synthetic data, nor dependent on binary rewards.
Acknowledgements: This research is partially funded by the National Science
Foundation grant EAGER-1649225.
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