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Abstract Referral networks consist of a network of experts, human or
automated agent, with differential expertise across topics and can redirect
tasks to appropriate colleagues based on their topic-conditioned skills.
Proactive skill posting is a setting in referral networks, where agents are
allowed a one-time local-network-advertisement of a subset of their skills.
Heretofore, while advertising expertise, experts only considered their own
skills and reported their strongest skills. However, in practice, tasks can
have varying difficulty levels and reporting skills that are uncommon
or rare may give an expert relative advantage over others, and the
network as a whole better ability to solve problems. This work introduces
market-aware proactive skill posting where experts report a subset of
their skills that give them competitive advantages over their peers. Our
proposed algorithm in this new setting, proactive-DIEL∆, outperforms
the previous state-of-the-art, proactive-DIELt during the early learning
phase, while retaining important properties such as tolerance to noisy
self-skill estimates, and robustness to evolving networks and strategic
lying.
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1 Introduction

A referral network [1] consists of experts, human or autonomous agents, where
each expert (teacher, worker, agent) can redirect difficult tasks to appropriate
expert colleagues. Such networks draw inspiration from real-world examples
of networks of physicians or consultancy firms. The learning-to-refer challenge
involves estimating topic-conditioned expertise of colleagues in a referral network
in an active learning framework.

In this paper, we focus on proactive skill posting [2], a setting where experts
perform a one-time (only at the beginning of simulation or when they join
a network) local-network advertisement to network-connected colleagues of a
subset of their skills, focusing on the expert top skills. In the real world, such
skill advertisements are common as experts often tell their colleagues about
tasks they are good at and often forge links with colleagues via social networks.
However, such (potentially noisy) priors are private information, and experts may
strategically lie or unknowingly overestimate or underestimate their own skills to
attract more referrals, i.e., profit from more business. Hence, a key component of
algorithms designed for this setting is a mechanism to elicit truthful reporting of
skills to make the system incentive compatible. However, when human experts
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select the set of topics to advertise, they not only consider their true absolute
expertise at those particular topics, but also take their relative advantage over
others into account. For instance, in a network of physicians, an accomplished
brain surgeon would want to publish the fact that she is skilled at brain surgery,
even though her success rate at diagnosing the common cold could be much
higher. In a similar vein, in this work, we introduce the notion of market-aware
skill posting, i.e. experts posting skills on topics they have relative advantage
over others and propose proactive-DIEL∆ for this setting.

Our key contributions are the following: First, we introduce market-aware
proactive skill posting in referral networks, previously not addressed in the proac-
tive skill posting literature. Second, we perform extensive empirical evaluations
on existing data sets comparing against proactive-DIELt, the known state-of-the-
art, and demonstrate that our newly-introduced algorithm, proactive-DIEL∆,
outperforms proactive-DIELt in terms of early learning-phase advantage. We
construct additional data sets with larger variance in task-difficulty and show
that the performance gap between proactive-DIEL∆ and proactive-DIELt widens
in the presence of tasks with varying difficulty levels. Finally, we show that like
its predecessors, proactive-DIEL∆ is robust to strategic lying, evolving networks,
and noisy self-skill estimates.

Related work: The referral framework draws inspiration from referral chain-
ing, first proposed in [3] and subsequently extended in [4, 5] (for further relevant
literature, see, e.g., [1]). Recent research in referral networks has focused on three
broad directions: identifying key algorithms and evaluating relative performance
on uninformed prior settings [1], designing algorithms immune to strategic lying
that incorporate partially available (potentially noisy) priors [2, 6], and robust-
ness to practical factors such as evolving networks, capacity constraints [1] and
time-varying expertise [7].

Our work on proactive skill posting is related to the bandit literature with
side-information [8, 9] in the sense that algorithms in this setting do not start
from scratch, but have leg-up based on task-relevant information. However, a
key difference is that, instead of obtaining that side data from observed trials [9]
or shape of the reward distribution [10], the side-information in our case is
obtained in a decentralized manner through advertisement of skills by the experts
themselves, who may in fact willfully misreport to attract more business. This
ties our work broadly to the vast literature in adversarial machine learning [11]
and truthful mechanism design [12, 13, 14]. For further relevant literature, see,
e.g., [2, 6].

2 Referral Networks

We summarize the basic notation, definitions, and assumptions and provide
necessary background for market-aware proactive skill posting.
Referral network: Represented by a graph (V, E) of size k in which each vertex
vi corresponds to an expert ei (1 ≤ i ≤ k) and each bidirectional edge ⟨vi, vj⟩
indicates a referral link which implies ei and ej can co-refer problem instances.
Subnetwork: of an expert ei: The set of experts linked to an expert ei by a
referral link.
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Referral scenario: Set of m instances (q1, . . . , qm) belonging to n topics (t1, . . . , tn)
addressed by the k experts (e1, . . . , ek) connected through a referral network
(V, E).
Expertise: Expertise of an expert/question pair ⟨ei, qj⟩ is the probability with
which ei can solve qj .
Referral mechanism: Following previous proactive skill posting literature [2, 6],
for a per-instance query budget Q, we kept fixed to Q = 2 across all our current
experiments. The referral mechanism consists of the following steps.

1. A user issues an initial query qj to a randomly chosen initial expert ei.
2. The initial expert ei examines the instance and solves it if possible. This

depends on the expertise of ei wrt. qj .
3. If not, a referral query is issued by ei to a referred expert ej within her

subnetwork, with a query budget of Q−1. Learning-to-refer involves improving
the estimate of who is most likely to solve the problem.

4. If the referred expert succeeds, she sends the solution to the initial expert,
who sends it to the user.

A detailed description of our assumptions can be found in [1, 2]. Some of
the important assumptions are: the network connectivity depends on (cosine)
similarity between the topical expertise (guided by the observation that experts
with similar expertise are more likely to know each other), and the distribution
of topical-expertise across experts can be characterized by a mixture of Gaussian
distributions. Note that, in our model, it is still possible that experts with very
little overlap in skills are connected for reasons beyond similar expertise (e.g.,
same geolocation, common acquaintances, etc.), making them prime candidates
for referrals. Also, an expert pair with substantial overlap in expertise areas may
still have specific topics where one expert is stronger than the other, making
referrals mutually beneficial. For topical-expertise distribution, a mixture of two
Gaussians was used to represent the expertise of experts with specific training
for the given topic (higher mean, lower variance), contrasted with the lower-level
expertise (lower mean, higher variance) of the layman population.

We now present necessary background for market-aware proactive skill post-
ing and describe what distinguishes it from traditional proactive skill posting.
Advertising unit: a tuple ⟨ei, ej , tk, µtk

⟩, where ei is the target expert, ej is the
advertising expert, tk is the topic and µtk

is ej ’s (advertised) topical expertise.
Similar to rewards in our uninformative prior setting, an advertising unit is also
locally visible, i.e., only the target expert gets to see the advertised prior for a
given unit.
Advertising budget: In practice, experts have limited time to socialize with
different colleagues and get to know each other’s experience. We incorporate this
phenomenon through the notion of budget and assume each expert is allocated a
budget of B advertising units, where B is twice the size of that expert’s subnet-
work. Effectively means that each expert reports her top two skills to everyone
in her subnetwork.
Explicit and implicit bid: A topic that is advertised in an advertising protocol
is an explicit bid. Similarly, a topic that is not advertised, for which an upper
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bound can be assumed, is an implicit bid. Top two skills are differently defined
in traditional proactive skill posting and market-aware skill posting. We describe
the difference in the advertising protocol next.
Advertising protocol: a one-time advertisement that happens right at the
beginning of the simulation or when an expert joins the network. The advertising
expert ej reports to each target expert ei in her subnetwork the two tuples
⟨ei, ej , tbest, µtbest

⟩ and ⟨ei, ej , tsecondBest, µtsecondBest
⟩, i.e., the top two topics in

terms of the advertising expert’s topic means.
Now, we describe the primary distinction between traditional proactive skill

posting and market-aware proactive skill posting. In traditional proactive skill
posting, for a given expert, µtbest

is simply her maximum topical expertise. In
market-aware proactive skill posting, we propose that every expert has access
to an estimate of µtk

(average network skill on each topic tk) and reports the
skills with her largest relative advantage µ∆ (where for a given expert/topic pair
⟨ej , tk⟩, µ∆ej ,tk

= µej ,tk
− µtk

).
Next, we illustrate the difference described above with the following example.

Consider a referral network of N experts and across five different topics, t1, . . . , t5,
the average network expertise are respectively, 0.1, 0.3, 0.8, 0.9, 0.4. Now, con-
sider an expert e whose expertise on the aforementioned five topics are 0.4,
0.3, 0.7, 0.65, 0.5, respectively. In traditional proactive skill posting, for every
colleague ei of e, e will have the following two advertising units: ⟨ei, e, t3, 0.7⟩ and
⟨ei, e, t4, 0.65⟩, reporting her skills on t3 and t4, the two topics she has highest
expertise in an absolute scale. However, notice that e is unlikely to have any
substantial relative advantage over other in those two topics as her expertise on
those two topics is sufficiently lower than the network expertise. Also, t1 is the
hardest topic where average expertise of the network is 0.1 and e is relatively
stronger in t1 with µ∆e,t1

= 0.3. Hence, in a market-aware skill posting setting, e
will report her skills in t1 and t5, the two topics where she has relative advantage
with the two advertisement units ⟨ei, e, t1, 0.4⟩ and ⟨ei, e, t5, 0.5⟩.

3 Distributed Referral Learning

Considering a single expert and a given topic, learning-to-refer is an action
selection problem, and each expert maintains an action selection thread for
each topic in parallel. If we think in the context of multi-armed bandit (MAB),
an action or arm corresponds to a referral choice, i.e., picking an appropriate
expert from the subnetwork. In order to describe an action selection thread,
we first name the topic T and expert e. Let q1, . . . , qN be the first N referral
queries belonging to topic T issued by expert e to any of her K colleagues in her
subnetwork denoted by e1, . . . , eK . For each colleague ei, e maintains a reward
vector ri,ni where ri,ni = (ri,1, . . . , ri,ni), i.e., the sequence of rewards observed
from expert ei on issued ni referred queries. Understandably, N =

∑K
i=1 ni. Let

m(ei) and s(ei) denote the sample mean and sample standard deviation of ri,ni
.

DIEL: First proposed in [15], Interval Estimation Learning (IEL) has been
extensively used in stochastic optimization and action selection problems. Action
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Algorithm 1: DIEL(e, T )
Initialization: ∀i, ni ← 2, ri,ni ← (0, 1)
Loop: Select expert ei who maximizes

score(ei) = m(ei) + s(ei)√
ni

Observe reward r
Update ri,ni

with r, ni ← ni + 1

selection using Distributed Interval Estimation Learning (DIEL) works in the
following way [2]. As described in Algorithm 1, at each step, DIEL [2] selects the
expert ei with highest m(ei) + s(ei)√

ni
. The intuition is that high mean selects for

best performance, and high variance selects for unexplored expert capability on
topic, thus optimizing for amortized performance, as variance decreases over time,
and best mean is selected reliably among the top candidates. DIEL operates in
an uninformed prior setting, and every action is initialized with two rewards of 0
and 1, allowing us to initialize the mean and variance and making all experts
equally likely to get picked in the beginning.

We now describe proactive-DIEL∆, our proposed new algorithm and proactive-
DIELt, our baseline.
3.1 Initialization

proactive-DIELt initialization: Rather than DIEL sets reward(ei, tk, ej) for
each i, j and k with a pair (0, 1) in order to initialize mean and variance, proactive-
DIELt initializes reward(ei, tk, ej) for each advertisement unit ⟨ei, ej , tk, µtk

⟩ with
two rewards of µtk

(explicit bid).
To initialize topics for which no advertisement units are available (implicit

bid), we initialize the rewards as if the expert’s skill was the same as on her
second best topic, that is, with two rewards of µtsecondBest

, effectively being an
upper bound on the actual value.
proactive-DIEL∆ initialization: A similar prior-bounding technique can be
used in proactive-DIEL∆ with the following modification. Recall that, each ex-
pert has knowledge about µtk

,∀k – the average network expertise across all
topics. Let t∆

best and t∆
secondBest be the two explicit bids for an expert e with

µt∆
secondBest

− µt∆
secondBest

≤ µt∆
best
− µt∆

best
, and t∆

implicit be any implicit bid. The
following inequality holds,

µt∆
implicit

− µt∆
implicit

≤ µt∆
secondBest

− µt∆
secondBest

(1)

since the relative advantage of any implicit bid must be less than or equal to the
relative advantage of t∆

secondBest. Rearranging equation 1, we get

µt∆
implicit

≤ µt∆
secondBest

+ µt∆
implicit

− µt∆
secondBest

(2)

All terms of the right-hand side of the equation 2 are known, and every
implicit bid is initialized with two rewards of µt∆

secondBest
+ µt∆

implicit
−µt∆

secondBest
.
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3.2 Penalty on Distrust

proactive-DIEL∆ follows the same penalty mechanism, Penalty on Distrust, as
proactive-DIELt

1. In this approach, in addition to assigning a binary reward
depending on the task outcome, we assign a penalty. For a given instance, if the
reward is r and the penalty p, the effective reward is r− p. The assigned penalty
incorporates a factor we may call distrust, as it estimates a likelihood the expert
is lying, given our current observations. Further details can be found in [6].

4 Experimental Setup

Baselines: We used DIEL (the parameter-free version first presented in [2]),
the known best-performing algorithm in uninformed prior setting, and proactive-
DIELt, the best-performing algorithm in proactive skill setting as our baselines.
Data set: Our test set for performance evaluation is the same data set, D, used
in [1, 2]2, which consists of 1000 referral scenarios. Each referral scenario consists
of a network of 100 experts and 10 topics.

In addition to D, we constructed two data sets inducing larger variance
in task-difficulty. Recall that, for topical-expertise distribution, we consider a
mixture of two Gaussians (with parameters λ = {wt

i , µt
i, σt

i} i = 1, 2.). One of
them (N (µt

2, σt
2)) has a greater mean (µt

2 > µt
1), smaller variance (σt

2 < σt
1) and

lower mixture weight (wt
2 << wt

1). For a given topic ti, we modify the topical
expertise for all experts in the following way:
µti,ej

= dfactor µti,ej
∀j, where dfactor ∼ U [C, 1]. The multiplicative factor

ensures that the initial property of being sampled from a mixture of Gaussians
holds. Different values for the parameter C allows us to vary the difficulty level
of a task. We generated two additional data sets using C = 0.25 (denoted as
D0.25) and C = 0.5 (denoted as D0.5).
Performance Measure: Following previous proactive skill posting literature [2,
6], we use two performance measures – overall task accuracy of our multi-expert
system and ICFactor, an empirical measure for evaluating Bayesian-Nash incentive
compatibility (a weaker form of incentive compatibility where being truthful
is weakly better than lying). If a network receives n tasks of which m tasks
are solved (either by the initial expert or the referred expert), the overall task
accuracy is m

n . As an empirical measure for evaluating Bayesian-Nash incentive
compatibility, we use ICFactor (described in [2]); an ICFactor value greater
than 1 implies truthfulness in expectation, i.e., truthful reporting fetched more
referrals than strategic lying. For evolving networks and noisy skill estimates, we
used the same experimental setting as described in [6].

5 Results

Figure 1 and Table 1 summarize main experimental results of our proposed
new algorithm, proactive-DIEL∆. The results highlight the following. First,
Figure 1(a) demonstrates that we can use similar prior-bounding technique to

1 The subscript t stands for trust.
2 The data set can be downloaded from https://www.cs.cmu.edu/~akhudabu/referral-

networks.html

https://www.cs.cmu.edu/~akhudabu/referral-networks.html
https://www.cs.cmu.edu/~akhudabu/referral-networks.html
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(c) Performance on evolving networks
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Figure 1. Performance comparison on data set D.

initialize proactive-DIEL∆ and a reward adjustment mechanism described in [6]
and obtain improved cold-start performance than proactive-DIELt, the known
state-of-the-art. Particularly, as shown in Figure 1(b), the advantage during
the early phase of learning is superior which widens as the tasks get harder
(see, Figure 2). A paired t-test reveals that during the early learning phase
(1000 samples or less per subnetwork), proactive-DIEL∆ is better than both the
baselines with p-value less than 0.0001. Second, in a real-world setting, it is easy
to imagine situations where new entrants will join a network while old members
leave. In a situation, where at regular interval a sizable chunk of the network
composition changes, Figure 1(c) shows that the early-phase learning advantage
translates into better adaptation to evolving networks. Third, our proposed
algorithm is tolerant to noisy self-skill estimates (shown in Figure 1(d)), thus
absolutely accurate estimates of own skill, which is an impractical assumption, is
not particularly necessary for the algorithm to succeed. Table 1 lists ICFactor
for all possible strategy combinations of reporting an expert’s top two skills. We
found that, across all three data sets, proactive-DIEL∆ exhibited robustness to
strategic lying.

We conclude our results section with a summary of our main results and an
outlook to future research directions. Our results demonstrate: (1) Market-aware
skill posting gives larger early-learning phase advantage than previously known
state-of-the-art, (2) our proposed algorithm, proactive-DIEL∆ is robust to noise
in self-skill estimates and strategic lying, and (3) the performance gap between
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(a) Overall performance (D0.5)
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(b) Early learning advantage (D0.5)
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(c) Overall performance (D0.25)
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(d) Early learning advantage (D0.25)

Figure 2. Performance comparison on data sets D0.25 and D0.50.

Table 1. Empirical analysis of Bayesian-Nash incentive-compatibility on three data
sets, D, D0.5 and D0.25. Each row represents a specific combination of strategies an
expert can use to report her best and second-best skills. All values indicate that being
truthful is no worse than lying.

µt∆
best

µt∆
secondBest

D D0.5 D0.25

Truthful Overbid 1.0174 1.0006 1.0026
Overbid Truthful 1.1892 1.4393 1.7843
Overbid Overbid 1.2159 1.7993 1.7620
Truthful Underbid 1.0976 1.0617 1.0860
Underbid Truthful 1.1301 1.1586 1.1333
Underbid Underbid 1.3672 1.1900 1.1588
Underbid Overbid 1.1213 1.0982 1.1404
Overbid Underbid 1.2835 1.4303 1.4616

proactive-DIEL∆ and proactive-DIELt widens when we use larger variance in
task difficulty (4) the early learning-phase advantage is particularly useful in
evolving networks. Future research directions may include: (1) extending market-
aware skill posting to other MAB algorithms (e.g., ϵ-Greedy, Q-Learning) (2)
in presence of a larger amount of noise, or when µtk

is not known, regularizing
the advertised priors relative to the subnetwork and (3) designing proactive skill
posting algorithms robust to time-varying expertise.
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